Given:
Mass of the rail road car, m = 2 kg
velocity of the three cars coupled system, v' = 1.20 m/s
velocity of first car,
= 3 m/s
Solution:
a) Momentum of a body of mass 'm' and velocity 'v' is given by:
p = mv
Now for the coupled system according to law of conservation of momentum, total momentum of a system before and after collision remain conserved:
(1)
where,
= velocity of the first car
= velocity of the 2 coupled cars after collision
Now, from eqn (1)


v' = 1.80 m/s
Therefore, the velocity of the combined car system after collision is 1.80 m/s
Option (ii) B is the correct option. The object on the moon has greater mass.
To resolve this, utilize the formulas Force = Mass * Acceleration.
The equation can be used to find the mass given the force in Newtons, using 9.8 m/s² for the acceleration of gravity of the earth and 1.6 m/s² for the moon.
Calculating the mass on earth:
30 N = 9.8 m/s² * mass
This results in a mass of 3.0 kg for the object on Earth.
Calculating the mass of the moon:
30 N = 1.6 m/s²2 * mass
Thus, the moon's object has a mass of 19. kg.
This can be explained by the fact that the earth has a stronger gravitational pull than the moon, producing more force per kilogram of mass. As a result, the moon's mass must be bigger to produce the same amount of force at a lower acceleration from gravity (1.6 m/s² vs. 9.8 m/s²).
To know more about Mass, refer to this link :
brainly.com/question/13386792
#SPJ9
Answer: The answer is option B
Explanation:
The base of the pyramid represents primary producers since they help to pass on energy to consumers as we go higher in the pyramid. They are not consumers because they supply energy and do not use up energy. They are called autotrophs.
2) solution gets broken down to solute and solvent.