Answer: force of gravity on the body due to height difference above the earth's surface
Explanation: as you increase the height of a body above ground, you do work against gravity in moving it from a point on the earth's surface to that point. So a body falling has a stored up gravito-potential energy which acts on it downward due to its mass, accelerating it downwards
Answer b): kinetic energy of the body
Explanation: the downward force produces an acceleration of magnitude 9.81m/s2 downwards which means an increasing velocity. This increasing velocity means the kinetic energy of the body is increasing (kinetic energy is proportional to velocity of the body squared)
Answer:

Explanation:
The potential energy of the spring or the work done by the spring is given by :
............(1)
k is the spring constant
d is the compression
When the spring is compressed a distance d' = d/3, let W' is the work is required to load the second dart. Then the work done is given by :

.............(2)
Dividing equation (1) and (2) :



So, the work required to load the second dart compared to that required to load the first is one-Ninth as much. Therefore, the correct option is (E).
The change in mechanical energy caused by the dissipative resistance force is equal to, difference between the potential energy and kinetic energy of the object.
Potential energy of the object, P.E = mgh
m is mass of the object = 10 kg
g is acceleration due to gravity = 9.8 m/s²
h= height from which it is dropped =50 m
Substituting the value we get,
P.E = 10×9.8×50 = 4900 J
Kinetic energy of the object, K.E = 
v is the velocity of the object = 26 m/s²
K.E = (1/2)×10×(26)²
= 3380 J
Change in mechanical energy caused by dissipative force = P.E ₋ K.E
= 4900 ₋ 3380 = 1520 J
false (if your talking about animals) animals cannot form letters. Animals cant do this because they dont have voice boxes capable pf creating a word, thats why animals chirp, yip, bark, cry, and chitter.
Answer:
In the case of an electric bulb, the electrical energy is converted to light and heat. The amount of electrical energy put into a bulb = the amount of light energy (desirable form) plus the heat energy that comes out of the bulb (undesirable form).
Explanation:
sana nakatulong)):