Answer:
The answer is below
Step-by-step explanation:
The Angle Addition Postulate states that the measure of an angle formed by two or more angles which are placed side by side is the sum of the measures of the two angles.
Therefore:
∠MON = ∠MOP + ∠NOP (angle addition postulate)
Substituting values gives:
124 = (2x + 1) + (2x + 1)
124 = 2x + 2x + 1 + 1
124 = 4x + 2
subtracting 2 from both sides of the equation:
124 - 2 = 4x + 2 - 2
4x = 122
Dividing through by 4:
4x / 4 = 122 / 4
x = 30.5
Therefore ∠MOP = 2x + 1 = 2(30.5) + 1 = 62°, ∠NOP = 2x + 1 = 2(30.5) + 1 = 62°
∠MOP = 62°, ∠NOP = 62°
N(1/3)-8=-13 is the correct answer.
Answer:

Step-by-step explanation:
We know that:
In a deck of 52 cards there are 4 aces.
Therefore the probability of obtaining an ace is:
P (x) = 4/52
The probability of not getting an ace is:
P ('x) = 1-4 / 52
P ('x) = 48/52
In this problem the number of aces obtained when extracting cards from the deck is a discrete random variable.
For a discrete random variable V, the expected value is defined as:

Where V is the value that the random variable can take and P (V) is the probability that it takes that value.
We have the following equation for the expected value:

In this problem the variable V can take the value V = 9 if an ace of the deck is obtained, with probability of 4/52, and can take the value V = -1 if an ace of the deck is not obtained, with a probability of 48 / 52
Therefore, expected value for V, the number of points obtained in the game is:

So:
