Answer:
= 331.81 g
Explanation:
Molarity is calculated by the formula;
Molarity = Moles/volume in liters
Therefore;
Moles = Molarity ×Volume in liters
= 0.35 M × 1.575 L
= 0.55125 Moles
But; Molar mass of Ba3(PO4)2 is 601.93 g/mol
Thus;
Mass = 0.55125 moles × 601.93 g/mol
<u>= 331.81 g</u>
Answer:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
Explanation:
A) During this procedure ( hypoventilation ) The CO2 in the arterial blood vessels and the lungs increases and this drives the PH level in the system lower, and the equilibrium will shift to the right. this is because the Blood-PH level is controlled by CO2 - bicarbonate buffer system
⇄ 
B) The blood PH may rise to 7.60 during Hyperventilation because the removal of CO2 from the lungs causes the increase in
which is directly proportional to the increase in Blood PH levels
C) Hyper ventilation before a dash would be useful because it will remove excessive Hydrogen ions and and raise the Blood PH levels in preparedness of the production of acids like Lactic acid
From,
RAM=element×its relative abudance/total abudance
=((107×13)+(12×109))/25
The answer is=107.96
Answer:
The correct answer is - option D. photosynthesis.
Explanation:
It is shown by the study that most of the atmospheric oxygen comes from the photosynthesis by plants as oxygen is the byproduct of the photosynthesis. Photosynthesis is the process that uses light energy, carbon dioxide, and water to produce food or glucose/sugar and release oxygen as the byproduct.
Many scientists believe that oceanic phytoplankton that releases oxygen by the photosynthesis process makes 80 to 85% of the total oxygen of the atmospheric oxygen.