Answer:
41.67 mol
Explanation:
1 Litre of water = 1000g
Mole = mass / molar mass
Mass of 1 L of water = 1000 g
Molar mass of water (H2O) :
(H = 1, O = 16)
H2O = (1 * 2) + 16 = (2 + 16) = 18g/mol
Amount of water consumed = (3/4) of 1 litre
= (3/4) * 1000g
= 750g
Therefore mass of water consumed = 750g
Mole = 750g / 18g/mol
Mole of water consumed = 41.6666
= 41.67 mol
I have the same question and cant still answer it so I need the answers
Answer:
Q = 143,921 J = 143.9 kJ.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the absorbed heat by considering this is a process involving sensible heat associated to the vaporization of water, which is isothermic and isobaric; and thus, the heat of vaporization of water, with a value of about 2259.36 J/g, is used as shown below:

Thus, we plug in the mass and the aforementioned heat of vaporization of water to obtain the following:

Regards!
Answer:
#2: They break down quicker than stable isotopes. - im not sure
Explanation: