Answer:
24 units
Step-by-step explanation:
In this problem, the area of this shape is measured in units.
1 unit = 1 little square
So, lets count all of the full squares. There are 20 of them.
Now lets count all of the half squares. There are 8 half squares.
Now, if we divide 8 over 2, we get 4 full units.
Now we just add up the units: 20 + 4 = 24 units
Hope this helps!
Hello,
Answer B since
(y=-3x+4)* 3==> 3y=-9x+12 which is the second equation ==>infinity many solutions.
There are different ways to solve a quadratic equation, the main ones that i'm thinking about right now are:
1) factor the equation as a product:
ex: x^2+ 4x + 3 =0
(x+3) (x+1) = 0
x=-3 and x=-1 are the solutions.
To find (x+p) and (x+q) you have to think that (p+q )have to be equal to the number that is multiplied by x, in my example it was 4 (3+1=4), (p times q) have to be equal to the last number of the quadratic equation, the one that is not multiplied by any x, that in my example is 3 (3 x 1= 3)
2) The other way to solve a quadratic function is by using a formula:
given: ax^2 +bx +c=0
x= (-b +/- <span>√(b^2 -</span> 4ac)) / 2a
ex: 3x^2 + 4x -2=0
x= (-4 +/- √16-4(3)(-2)) / 6= (-4 +/- √16+24)/6= (-4 +/- <span>√40) / 6
now there are 2 possibilities: x= (-4+</span><span>√40) /6
and
x= (-4 - </span><span>√40) / 6
I hope the examples were clear enough also if i did't get very nice numbers. Look closely to the sings + and -, they are very important</span>
The sum of the given series can be found by simplification of the number
of terms in the series.
- A is approximately <u>2020.022</u>
Reasons:
The given sequence is presented as follows;
A = 1011 + 337 + 337/2 + 1011/10 + 337/5 + ... + 1/2021
Therefore;
The n + 1 th term of the sequence, 1, 3, 6, 10, 15, ..., 2021 is given as follows;
Therefore, for the last term we have;
2 × 2043231 = n² + 3·n + 2
Which gives;
n² + 3·n + 2 - 2 × 2043231 = n² + 3·n - 4086460 = 0
Which gives, the number of terms, n = 2020


Which gives;


Learn more about the sum of a series here:
brainly.com/question/190295