1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ozzi
3 years ago
6

If a + b = c and b = 5, then a + 5 = c is known as the ________ property. Question 18 options: A) substitution B) symmetric C) t

ransitive D) reflexive
Mathematics
2 answers:
Anna007 [38]3 years ago
8 0

Answer:

Substitution

Step-by-step explanation:

We know that B equals five, and that a + b = c. This means that if we substitute 5 for b, the equation will still be true. Hope this helps!

Andre45 [30]3 years ago
3 0

Answer:

Substitution

Step-by-step explanation:

you substituted b for 5 in the equation

Hope this helped and brainliest plss

You might be interested in
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
A fair coin is tossed 5000 times. What can you say about getting the outcome of exactly 2500 tails
WINSTONCH [101]

Step-by-step explanation:

You can't expect to get exactly 2500 out of 5000 tosses more than a few times . You will come pretty close, but that's only good in horseshoes.

Of course I'm answering this on the basis of a computer language and not actually performinig this a million tmes, each part of a million consisting of 5000 tosses.

Simulations and not completely unbiased, but based on experience, 5000 is a very small number and getting 2500 more than a couple of times is unlikely

6 0
3 years ago
Read 2 more answers
Mary wants to buy a new house but needs money for the down payment. Her parents agree to lend her money at an annual rate of 2%,
lukranit [14]

Answer:

a) Simple interest paid = $360

b) Total repayment amount = $6360

Step-by-step explanation:

It is given that:

Principal, P = $6000

Rate of interest, R = 2%

Time, T = 3 years

<em>(a) Total interest paid</em>:

<u>Formula</u> for Simple Interest is given as:

S.I. = \dfrac{P \times R \times T}{100}

Putting the values of P, R and T to find out Simple Interest:\\\Rightarrow S.I. = \dfrac{6000 \times 2 \times 3}{100}\\\Rightarrow S.I. = \$360

<em>(b) Total repayment amount</em>:

We know that formula for total amount is given as:

<em>Amount = Principal + Simple Interest</em>

Amount = 6000 + 360 = $6360

So, total repayment amount = $6360

So, the answers are:

a) Simple interest paid = $360

b) Total repayment amount = $6360

3 0
3 years ago
Please answer correctly !!!!! Will mark Brianliest !!!!!!!!!!!!!!
ELEN [110]

Answer:

Volume~of~cylinder=\pi r^2h

  • \pi *(10)^2*5
  • 500\pi
  • 1570.8~m^3

<u>-------------------------</u>

<u>hope it helps..</u>

<u>have a great day!!</u>

3 0
3 years ago
Read 2 more answers
What is 25/30 in simplest form
telo118 [61]
5/6 all you do is divide by 5
5 0
3 years ago
Read 2 more answers
Other questions:
  • PLEASE HELP MEEE!!!!!!!!!!!
    6·2 answers
  • a varies directly as b and inversely as the square of c. If a = 197 when b = 5 and c = 5, find a if b = 3 and c = 3
    15·1 answer
  • Find the product of 21* (-12)​
    7·1 answer
  • 1. Solve the Equation: 6v = -24
    14·1 answer
  • Simplify the following
    12·2 answers
  • Nine thousand and ninety​
    13·2 answers
  • (−7,−6)y(9,10)(-7,-6)y(9,10)
    12·1 answer
  • Find the area of the figure below. Use 3.14 for π.
    5·1 answer
  • Help pleaseee anyone??
    11·2 answers
  • PLEASE HELP ILL GIVE BRAINLIEST TO FIRST CORRECT ANSWER
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!