Only in metamorphic rocks does this occur.
Answer:
<em>When a moving car brakes to a stop the </em><em>kinetic energy of the car is converted to heat energy.
</em>
Explanation:
A moving car has kinetic energy.
It is given by the equation 
Where m denotes mass of the car and v denote sits velocity. When the brakes are applied the velocity becomes zero and the car doesn’t possess kinetic energy anymore.
According to law of conservation of energy can neither be created nor be destroyed but can only be transformed from one form to another. On coming to a stop, the kinetic energy of the car gets converted to heat. The friction between the tyre and the road heats up the tyre.
Hybrid
<u>Hybrid</u> modified the concept by adding an internal combustion engine and marketing hybrids that were part electric and part gas powered.
- The driving wheels of hybrid vehicles receive power from their drivetrains.
- A hybrid car has numerous sources of propulsion.
- There are numerous hybrid configurations.
- A hybrid vehicle might, for instance, get its energy from burning gasoline while alternating between an electric motor and a combustion engine.
- Although they have primarily been employed for rail locomotives, electrical vehicles have a long history of integrating internal combustion and electrical transmission, like in a diesel-electric power-train.
- Because the electric drive transmission directly substitutes the mechanical gearbox rather than serving as an additional source of motive power, a diesel-electric powertrain does not meet the definition of a hybrid.
- Only the electric/ICE hybrid car type was readily accessible on the market as of 2017.
- One type used parallel operation to power both motors at the same time.
- Another ran in series, using one source to supply power solely and the other to supply electricity.
- Either source may act as the main driving force, with the other source serving to strengthen the main.
To learn more about hybrid vehicles visit:
brainly.com/question/14610495
#SPJ4
Answer: 12
Explanation:
Let’s take for instance the case of a wave with a frequency of 400 Hz going through a material at a speed of .5 m/s. The wavelength result is 12 m. Wave velocity (m/s) = Frequency (Hz) x Wavelength (m)