1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
likoan [24]
2 years ago
10

Two identical waves are destructively interfere. What will happen to the resulting wave?

Physics
1 answer:
storchak [24]2 years ago
8 0

Answer:

Because the disturbances are in opposite directions for this superposition, the resulting amplitude is zero for pure destructive interference

Explanation:

You might be interested in
A 1 kg mass is attached to a spring with spring constant 7 Nt/m. What is the frequency of the simple harmonic motion? What is th
Scorpion4ik [409]

1. 0.42 Hz

The frequency of a simple harmonic motion for a spring is given by:

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k = 7 N/m is the spring constant

m = 1 kg is the mass attached to the spring

Substituting these numbers into the formula, we find

f=\frac{1}{2\pi}\sqrt{\frac{7 N/m}{1 kg}}=0.42 Hz

2. 2.38 s

The period of the harmonic motion is equal to the reciprocal of the frequency:

T=\frac{1}{f}

where f = 0.42 Hz is the frequency. Substituting into the formula, we find

T=\frac{1}{0.42 Hz}=2.38 s

3. 0.4 m

The amplitude in a simple harmonic motion corresponds to the maximum displacement of the mass-spring system. In this case, the mass is initially displaced by 0.4 m: this means that during its oscillation later, the displacement cannot be larger than this value (otherwise energy conservation would be violated). Therefore, this represents the maximum displacement of the mass-spring system, so it corresponds to the amplitude.

4. 0.19 m

We can solve this part of the problem by using the law of conservation of energy. In fact:

- When the mass is released from equilibrium position, the compression/stretching of the spring is zero: x=0, so the elastic potential energy is zero, and all the mechanical energy of the system is just equal to the kinetic energy of the mass:

E=K=\frac{1}{2}mv^2

where m = 1 kg and v = 0.5 m/s is the initial velocity of the mass

- When the spring reaches the maximum compression/stretching (x=A=amplitude), the velocity of the system is zero, so the kinetic energy is zero, and all the mechanical energy is just elastic potential energy:

E=U=\frac{1}{2}kA^2

Since the total energy must be conserved, we have:

\frac{1}{2}mv^2 = \frac{1}{2}kA^2\\A=\sqrt{\frac{m}{k}}v=\sqrt{\frac{1 kg}{7 N/m}}(0.5 m/s)=0.19 m

5. Amplitude of the motion: 0.44 m

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}kA^2 is the mechanical energy of the system when x=A (maximum displacement)

Equalizing the two expressions, we can solve to find A, the amplitude:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}kA^2\\A=\sqrt{x_0^2+\frac{m}{k}v_0^2}=\sqrt{(0.4 m)^2+\frac{1 kg}{7 N/m}(0.5 m/s)^2}=0.44 m

6. Maximum velocity: 1.17 m/s

We can use again the law of conservation of energy.

- E_i = \frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2 is the initial mechanical energy of the system, with x_0=0.4 m being the initial displacement of the mass and v_0=0.5 m/s being the initial velocity

- E_f = \frac{1}{2}mv_{max}^2 is the mechanical energy of the system when x=0, which is when the system has maximum velocity, v_{max}

Equalizing the two expressions, we can solve to find v_{max}, the maximum velocity:

\frac{1}{2}kx_0^2 + \frac{1}{2}mv_0^2=\frac{1}{2}mv_{max}^2\\v_{max}=\sqrt{\frac{k}{m}x_0^2+v_0^2}=\sqrt{\frac{7 N/m}{1 kg}(0.4 m)^2+(0.5 m/s)^2}=1.17 m/s m

4 0
2 years ago
Read 2 more answers
A concave lens can only form a. A. real image. B. reversed image. C. virtual image. D. magnified image.
Umnica [9.8K]
A concave lens can only form a virtual image. The correct option among all the options that are given in the question is the third option or option "C". Concave lenses are mostly thinner in the middle compared to its edges. I hope that this answer has come to your help.
4 0
3 years ago
Read 2 more answers
What might you have if you dont feel well?
snow_lady [41]
You may have a cold if you do not feel well, depends on the symptoms
3 0
3 years ago
Read 2 more answers
Which famous scientist is credited as the founder of the scientific method?
anygoal [31]
Aristotle created and it’s credited as the creator.
3 0
3 years ago
A 125kg bumper car going 12m/s hits a 235kg bumper car going -13m/s.if the first car bounces back at -12.5m/s what is the veloci
vovikov84 [41]
According to the law of conservation of momentum:

m_{1}v_{1}+m_{2}v_{2}=m_{1}v_{1}'+m_{2}v_{2}'

m1 = mass of first object
m2 = mass of second object
v1 = Velocity of the first object before the collision
v2 = Velocity of the second object before the collision
v'1 = Velocity of the first object after the collision
v'2 = Velocity of the second object after the collision

Now how do you solve for the velocity of the second car after the collision? First thing you do is get your given and fill in what you know in the equation and solve for what you do not know. 

m1 = 125 kg     v1 = 12m/s      v'1 = -12.5m/s
m2 = 235kg      v2 = -13m/s     v'2 = ?

m_{1}v_{1}+m_{2}v_{2}=m_{1}v_{1}'+m_{2}v_{2}'
(125kg)(12m/s)+(235kg)(-13m/s)=(125kg)(-12.5m/s)+(235kg)(v_{2}'
1,500kg.m/s+(-3055kg.m/s)=(-1562.5kg.m/s)+(235kg)(v_{2}')
-1,555kg.m/s=(-1562.5kg.m/s)+(235kg)(v_{2}')

Transpose everything on the side of the unknown to isolate the unknown. Do not forget to do the opposite operation. 

-1,555kg.m/s + 1562.5kg.m/s=(235kg)(v_{2}')
7.5kg.m/s=(235kg)(v_{2}')
(7.5kg.m/s)/(235kg)=(v_{2}')
0.03m/s=(v_{2}')

The velocity of the 2nd car after the collision is 0.03m/s.
5 0
3 years ago
Other questions:
  • Jumps at 8 m/s at a 30 degree angle above the horizontal. how long was she in the air?
    12·1 answer
  • Potential Difference Across Axon Membrane The axoplasm of an axon has a resistance Rax. The axon's membrane has both a resistanc
    15·1 answer
  • Will two sounds of 50 db constitute a sound of 100 db . Explain
    14·1 answer
  • g semi-infinite wire segment that lies along the negative y axis and carries current of 548 Amperes in the positive y direction.
    5·1 answer
  • If you wanted to do calculations with speed (distance/time), which base units would you use
    11·1 answer
  • How is earth outer layer different from a cracked hard-boiled egg?
    11·1 answer
  • A rock has a mass of 25kg. The acceleration due to gravity is 10m/s and the height of the rock is 42 m. Find the potential energ
    13·2 answers
  • Matt plays badminton. He serves the birdie with a velocity of 4.25 m/s [right] covering a displacement of 5.2 m [forward]. How m
    10·1 answer
  • Why is it important that an astronomer studies physics?
    11·2 answers
  • A motor has coils with a resistance of 10.0 ohms and is supplied by a voltage of V = 1.20 x 102 V. When the motor is running at
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!