Answer:
50 N/m
Explanation:
Elastic energy = kinetic energy
EE = KE
½ kx² = ½ mv²
½ k (4 m)² = ½ (8.0 kg) (10.0 m/s)²
k = 50 N/m
Answer:
ratio =0.3075 T
Explanation:
The magnetic field B creates a force on a moving charge such that

Now this causes a centripetal acceleration

so
...........(i)
...............(ii)
If accelerating potential V is same and then kinetic energy equals the potential energy difference

put these value in equation (ii)
simplifying we get

for same location r will be same in both case
..............(iii)
..........(iv)
dividing (iv) and (iii) equation we get



so on solving we get
=0.3075 T
If a Ferris wheel has a 15-m radius and completes five turns about its horizontal axis every minute then the acceleration of a passenger at his lowest point during the ride is 4.11
.
Calculation:
Step-1:
It is given that the radius of the Ferris wheel is r=15 m, and the angular speed of the wheel is
=5rev/min.
It is required to find the angular acceleration of a passenger at his lowest point during the ride.
The formula required to calculate the angular acceleration is,
.
Step-2:
Now substituting the given values into the equation to get the value of the angular acceleration.

The acceleration is towards upwards that means towards the center of the wheel.
Learn more about the angular acceleration:
brainly.com/question/1592013
#SPJ4
Answer:
a. 165.5 V
b. 7.78 A
Explanation:
Here is the complete question
The RMS potential difference of an AC household outlet is 117 V. a) What is the maximum potential difference across a lamp connected to the outlet? b) If the RMS current through the lamp is 5.5 A, what is the maximun current through the lamp.
Solution
a. The maximum potential difference across the lamp V₀ = √2V₁ where V₁ = rms value of potential difference = 117 V
V₀ = √2V₁ = √2 × 117 V = 165.5 V
b. The maximum current through the lamp I₀ = √2I₁ where I₁ = rms value of current = 5.5 A
V₀ = √2V₁ = √2 × 5.5 A = 7.78 A
if one of the charge is doubled, the electric potential energy would be doubled too