Temperature of somewhere.
The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
In sodium there are 11 electrons
In chlorine there are 17 electrons
There are 17 protons in chlorine
There are 11 protons in sodium
I’m not sure what an octet is I study in a British system if there’s anything else you’re not sure of search the Internet it has all the answers
Answer:
Explanation:
In an aqueous solution of potassium sulfate (K₂SO₄), the solute is K₂SO₄ and the solvent is water. The percentage by mass describes the grams of solute there are dissolved per 100 grams of solution. It can be calculated as:
mass percentage = (mass of solute/total mass of solution) x 100%
For example, in an aqueous solution which is 2% by mass of K₂SO₄, there are 2 grams of K₂SO₄ per 100 g of solution.
Answer:
C. its particles move farther apart and the substance becomes a gas.
Explanation:
A. is wrong because moving closer together creates a solid, not a gas.
B. is wrong because moving father apart creates a gas, not solid.
C. is correct because moving farther apart creates a gas.
D. is wrong because when heat is added particles spread apart because they vibrate faster. Although, in a solid the particles are closer together.
- Just know the states of matter and how the particles move and that will help with this problem.