Answer:
E - Be and O
A - Mg and N
E - Li and Br
F - Ba and Cl
B - Rb and O
Explanation:
Be and O
Be is a metal that loses 2 e⁻ to form Be²⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form BeO (E-MX).
Mg and N
Mg is a metal that loses 2 e⁻ to form Mg²⁺ and N is a nonmetal that gains 3 e⁻ to form O³⁻. For the ionic compound to be neutral, it must have the form Mg₃N₂ (A-M₃X₂).
Li and Br
Li is a metal that loses 1 e⁻ to form Li⁺ and Br is a nonmetal that gains 1 e⁻ to form Br⁻. For the ionic compound to be neutral, it must have the form LiBr (E-MX).
Ba and Cl
Ba is a metal that loses 2 e⁻ to form Ba²⁺ and Cl is a nonmetal that gains 1 e⁻ to form Cl⁻. For the ionic compound to be neutral, it must have the form BaCl₂ (F-MX₂).
Rb and O
Rb is a metal that loses 1 e⁻ to form Rb⁺ and O is a nonmetal that gains 2 e⁻ to form O²⁻. For the ionic compound to be neutral, it must have the form Rb₂O (B-M₂X).
Answer:
Negative sign says that release of heat.
Explanation:
The expression for the calculation of the heat released or absorbed of a process is shown below as:-
Where,
is the heat released or absorbed
m is the mass
C is the specific heat capacity
is the temperature change
Thus, given that:-
Mass = 25.2 g
Specific heat = 0.444 J/g°C
So,
Negative sign says that release of heat.
Answer:
<span> Its location is in the nucleus, because the particle is a proton or a neutron.</span>
Answer:
Mass of solute = 0.0036 g
Explanation:
Given data:
Concentration of Cl⁻ = 15.0 ppm
Volume of water = 240 mL
Mass of Cl⁻ present = ?
Solution:
1 mL = 1 g
240 mL = 240 g
Formula:
ppm = mass of solute / mass of sample ×1,000,000
by putting values,
15.0 ppm = (mass of solute / 240 g) ×1,000,000
Mass of solute = 15.0 ppm × 240 g / 1,000,000
Mass of solute = 0.0036 g