Hydrogen fusion is the answer. It is also known as <span>hydrogen burning. </span>
First, draw the 2-hexene. Th is is a molecule of six carbons with a double bond in the second carbon:
CH3 - CH = CH2 - CH2 - CH2 - CH3
Secong, put one Br on the second carbon and one Br on the third carbon:
CH3 - CBr = CBr - CH2 - CH2 - CH3
Third, cis means that the two Br are placed in opposed positions, this is drawn with one Br up and the other down. So, you need to represent the position of the Br in the space:
H Br H H H
| | | | |
H - C - C = C - C - C - C - H
| | | | |
H Br H H H
The important fact to realize is that the two Br are in opposed sides of the molecule.
B. slows down is your answer, obviously as it approaches carrying capacity, there would be less available space to find in the place of inhabitance, so less and less population units would be able to find the place of inhabitance suitable for living, or can't find enough space to live in.
Answer:
The correct answer is - yes, 4.57 g of solute per 100 ml of solution
Explanation:
The correct answer is yes we can calculate the solubility of X in the water at 22.0°C. The salt will remain after the evaporate from the dissolved and cooled down at 26°C.
Then, the amount of solute dissolved in the 700 ml solution at 26°C is the weighed precipitate: 0.032 kg = 32 g.
Then solublity will be :
32. g solute / 700 ml solution = y / 100 ml solution
⇒ y = 32. g solute × 100 ml solution / 700 ml solution = 4.57 g.
Thus, the answer is 4.57 g of solute per 100 ml of solution.