<u>We are given:</u>
Mass of ice = 21 grams
The ice is already at 0°c, the temperature at which it melts to form water
Molar heat of fusion of Ice = 6.02 kJ/mol
<u>Finding the energy required:</u>
<u>Number of moles of Ice: </u>
Molar mass of water = 18 g/mol
Number of moles = given mass/ molar mass
Number of moles = 21 / 18 = 7/6 moles
<u>Energy required to melt the given amount of ice:</u>
Energy = number of moles * molar heat of fusion
Energy = (7/6) * (6.02)
Energy = 7.02 kJ OR 7020 joules
Does anyone know the answer?
A solution (in this experiment solution of NaNO₃) freezes at a lower temperature than does the pure solvent (deionized water). The higher the
solute concentration (sodium nitrate), freezing point depression of the solution will be greater.
Equation describing the change in freezing point:
ΔT = Kf · b · i.
ΔT - temperature change from pure solvent to solution.
Kf - the molal freezing point depression constant.
b - molality (moles of solute per kilogram of solvent).
i - Van’t Hoff Factor.
First measure freezing point of pure solvent (deionized water). Than make solutions of NaNO₃ with different molality and measure separately their freezing points. Use equation to calculate Kf.
Wind abrades rock by sandblasting, this is the process in which wind causes the
Based on Le Chatelier's principle, if the equilibrium of a system is disturbed by changing the temperature, pressure or concentration, then it will shift in a direction to undo the effect of the induced change.
The given equilibrium is:
A + B ↔ AB
Removal of the reactant A implies that the concentration of A has decreased, therefore the equilibrium will shift in a direction to produce more of A. Thus, it will shift to the left and the rate of the reverse or backward reaction will increase.