This will be: [√9]/[(3-2i)+(1+5i)] simplifying the above we get: √9/(3+1-2i+5i) =√9/(4+3i) rationalizing the denominator we get: √9/(4-3i)×(4-3i)/(4-3i) =[√9(4-3i)]/(16+9) =[3(4-3i)]/25 =(12-9i)/25
2. (a + b i) + (c +d i)=(a +c) + i(b+d), i.e real part should be added or subtracted to real part and imaginary part should be added or subtracted to imaginary part.
3. ( a + b i)(a - bi)= a² + b²
4.
→So,
→3 - 2 i + 1 + 5 i= 4 + 3 i
→→→Rationalizing the Denominator i.e complex number