- Angle 1 is congruent to angle 2, since BD bisects <ABC and the two angles created on each side of the bisector at point B are equal.
- <2 ≅ <3 because of the corresponding angles theorem.
- <1 ≅ <4 because alternate angles are congruent if two parallel lines are cut by a transversal.
- <3 ≅ <4 by the substitution property of equality.
- AD/CD = EB/CB by the triangle proportionality theorem.
- If two angles in a triangle are congruent, the sides opposite the angles are congruent, so AE = EB.
- AD/CD = AB/CB by the substitution property of equality.
<h3>The properties of similar triangles.</h3>
In Geometry, two (2) triangles are said to be similar when the ratio of their corresponding side lengths are equal and their corresponding angles are congruent.
<h3>What is the substitution property of equality?</h3>
The substitution property of equality states that assuming x, y, and z are three (3) quantities, and if x is equal to y (x = y) based on a rule and y is equal to z (y = z) by the same rule, then, x and z (x = y) are equal to each other by the same rule.
In this context, we can reasonably infer and logically deduce that the ratio of AD/CD is equal to AB/CB based on the substitution property of equality.
Read more on substitution property here: brainly.com/question/2459140
#SPJ1
Complete Question:
In ΔABC, side BC is extended to point E. When connected to vertex A, segment EA is parallel to segment BD. In this construction, you are given that BD bisects <ABC.
Prove: AD/CD = AB/CB.
Complete the paragraph proof.
The rate of change is 1/2
Because it’s the constant and whatever x is, it would always multiply by 1/2
Answer:
4
Step-by-step explanation:
Answer: good
Step-by-step explanation:
Responder:
1/12
Explicación paso a paso:
Entonces multiplicamos 9 por 3 y obtenemos 27.
Luego multiplicamos 2 por 12 y obtenemos 24.
A continuación, le damos a ambos términos nuevos denominadores: 12 × 3 = 36.
Así que ahora nuestras fracciones se ven así:
27
36
-
24
36
Paso 2
Dado que nuestros denominadores coinciden, podemos restar los numeradores.
27 - 24 = 3
Entonces la respuesta es:
3
36
Paso 3
Por último, necesitamos simplificar la fracción, si es posible. ¿Se puede reducir a una fracción más simple?
Para averiguarlo, intentamos dividirlo por 2 ...
¡No! Así que ahora probamos con el siguiente número primo mayor, 3 ...
¿Son tanto el numerador como el denominador divisibles por 3? ¡Sí! Entonces lo reducimos:
3
36
÷ 3 =
<u>1/12 </u>