As the volume of a gas increases <em>at constant temperature</em>, the number of particle impacts per unit area decreases.
There is the same number of impacts, but they are spread over a larger surface area.
Thus, the number of impacts per unit area decreases.
Answer:
4.5 g/L.
Explanation:
- To solve this problem, we must mention Henry's law.
- Henry's law states that at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid.
- It can be expressed as: P = KS,
P is the partial pressure of the gas above the solution.
K is the Henry's law constant,
S is the solubility of the gas.
- At two different pressures, we have two different solubilities of the gas.
<em>∴ P₁S₂ = P₂S₁.</em>
P₁ = 525.0 kPa & S₁ = 10.5 g/L.
P₂ = 225.0 kPa & S₂ = ??? g/L.
∴ S₂ = P₂S₁/P₁ = (225.0 kPa)(10.5 g/L) / (525.0 kPa) = 4.5 g/L.
Answer: Option (a) is the correct answer.
Explanation:
Transmutation involves the conversion of one chemical element into another chemical element. This change occurs when an element or isotope passes through a number of reactions. It is a natural process and happens when there is a radioactive decay.
Hence, it is also a nuclear change as it occurs when there is a change in the nucleus of an atom. As this change can be due to the nuclear decay so as a result there will be some change in energy also. It is the process where one element converts into another using bombardment with high energy particles.
Thus, we can conclude that transmutation involves is a nuclear change.
Answer:
[Ne] 3s2 3p2
Explanation:
Neon (Ne) is the noble gas right before silicon (Si).
Then right after neon is the 3s subshell. It has two electrons and is full.
After 3s comes the 3p subshell, and silicon only has two electrons in the 3p subshell (you can just count the electrons in each subshell on your periodic table).