<h2>
Explanation:</h2><h2>
</h2>
An irrational number is a number that can't be written as a simple fraction while a rational number is a number that can be written as the ratio of two integers, that is, as a simple fraction. So in this case we have the number 2 which is ration, and we can multiply it by an irrational number
such that the product is an irrational number. So any irrational number will meet our requirement because the product of any rational number and an irrational number will lead to an irrational number. For instance:

Answer:
where the img
Step-by-step explanation:
We have the following expression

This is equivalent to

Since

we have that

Therefore, the answer is the second option from top to bottom.