1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
postnew [5]
3 years ago
8

Subtract. 4 1/5 -2 9/10

Mathematics
2 answers:
Vikki [24]3 years ago
6 0
Multiply by 2 on the numerator and the denominator of 4 1/5, we get 4 2/10, which is 4.2. 2 9/10 is 2.9. We subtract 4.2 - 2.9 to get 1.3, which, as a fraction, is 1 3/10.
---
Hope this helps!
==jding713==
Lerok [7]3 years ago
3 0
4 1/5 - 2 9/10 = 4 2/10 - 2 9/10 = 3 12/12 - 2 9/10 = 1 3/10. Hope this helped
You might be interested in
There are 50 kids at the park 30 of the girls what percent of the kids are boys
Flauer [41]

Answer:

40 %

Step-by-step explanation:

3 0
3 years ago
How to write 6/8 as a decimal ?
Korvikt [17]

all have to do is divide the fraction to make it into a decimal ,

6/8= 0.75

6 0
3 years ago
Ms. Green has 3 % yards of fabric. One bandana requires 1/4 of a yard of fabric. How many bandanas can
Nikitich [7]

Answer:

12

Step-by-step explanation:

number of bandana that can be made = total yards of fabric ÷ yards needed to make one bandanna

3 ÷ 1 /4

= 3 x 4 = 12

7 0
3 years ago
Solve for x: 4/x - x/8 = 0
Lostsunrise [7]

Answer:

x = \sqrt{32}

Step-by-step explanation:

\frac{4}{x} - \frac{x}{8} = 0\\\\\frac{4}{x} = \frac{x}{8}\\\\x^2 = 32\\\\x = \sqrt{32}

8 0
3 years ago
Read 2 more answers
What is the derivative of x times squaareo rot of x+ 6?
Dafna1 [17]
Hey there, hope I can help!

\mathrm{Apply\:the\:Product\:Rule}: \left(f\cdot g\right)^'=f^'\cdot g+f\cdot g^'
f=x,\:g=\sqrt{x+6} \ \textgreater \  \frac{d}{dx}\left(x\right)\sqrt{x+6}+\frac{d}{dx}\left(\sqrt{x+6}\right)x \ \textgreater \  \frac{d}{dx}\left(x\right) \ \textgreater \  1

\frac{d}{dx}\left(\sqrt{x+6}\right) \ \textgreater \  \mathrm{Apply\:the\:chain\:rule}: \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx} \ \textgreater \  =\sqrt{u},\:\:u=x+6
\frac{d}{du}\left(\sqrt{u}\right)\frac{d}{dx}\left(x+6\right)

\frac{d}{du}\left(\sqrt{u}\right) \ \textgreater \  \mathrm{Apply\:radical\:rule}: \sqrt{a}=a^{\frac{1}{2}} \ \textgreater \  \frac{d}{du}\left(u^{\frac{1}{2}}\right)
\mathrm{Apply\:the\:Power\:Rule}: \frac{d}{dx}\left(x^a\right)=a\cdot x^{a-1} \ \textgreater \  \frac{1}{2}u^{\frac{1}{2}-1} \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{u}}

\frac{d}{dx}\left(x+6\right) \ \textgreater \  \mathrm{Apply\:the\:Sum/Difference\:Rule}: \left(f\pm g\right)^'=f^'\pm g^'
\frac{d}{dx}\left(x\right)+\frac{d}{dx}\left(6\right)

\frac{d}{dx}\left(x\right) \ \textgreater \  1
\frac{d}{dx}\left(6\right) \ \textgreater \  0

\frac{1}{2\sqrt{u}}\cdot \:1 \ \textgreater \  \mathrm{Substitute\:back}\:u=x+6 \ \textgreater \  \frac{1}{2\sqrt{x+6}}\cdot \:1 \ \textgreater \  Simplify \ \textgreater \  \frac{1}{2\sqrt{x+6}}

1\cdot \sqrt{x+6}+\frac{1}{2\sqrt{x+6}}x \ \textgreater \  Simplify

1\cdot \sqrt{x+6} \ \textgreater \  \sqrt{x+6}
\frac{1}{2\sqrt{x+6}}x \ \textgreater \  \frac{x}{2\sqrt{x+6}}
\sqrt{x+6}+\frac{x}{2\sqrt{x+6}}

\mathrm{Convert\:element\:to\:fraction}: \sqrt{x+6}=\frac{\sqrt{x+6}}{1} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}}{1}

Find the LCD
2\sqrt{x+6} \ \textgreater \  \mathrm{Adjust\:Fractions\:based\:on\:the\:LCD} \ \textgreater \  \frac{x}{2\sqrt{x+6}}+\frac{\sqrt{x+6}\cdot \:2\sqrt{x+6}}{2\sqrt{x+6}}

Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions
\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{x+2\sqrt{x+6}\sqrt{x+6}}{2\sqrt{x+6}}

x+2\sqrt{x+6}\sqrt{x+6} \ \textgreater \  \mathrm{Apply\:exponent\:rule}: \:a^b\cdot \:a^c=a^{b+c}
\sqrt{x+6}\sqrt{x+6}=\:\left(x+6\right)^{\frac{1}{2}+\frac{1}{2}}=\:\left(x+6\right)^1=\:x+6 \ \textgreater \  x+2\left(x+6\right)
\frac{x+2\left(x+6\right)}{2\sqrt{x+6}}

x+2\left(x+6\right) \ \textgreater \  2\left(x+6\right) \ \textgreater \  2\cdot \:x+2\cdot \:6 \ \textgreater \  2x+12 \ \textgreater \  x+2x+12
3x+12

Therefore the derivative of the given equation is
\frac{3x+12}{2\sqrt{x+6}}

Hope this helps!
8 0
3 years ago
Other questions:
  • If 32x+1 - 3x+5, what is the value of x?<br> оооо
    12·2 answers
  • Can someone help me with this <br>9/10 ÷2/5
    11·2 answers
  • Your food at a restaurant costs $35.00 and tax is 6% how much would be it together
    11·1 answer
  • Can somebody help me
    6·1 answer
  • 36= W/4 what does w equal ???????????///
    10·2 answers
  • 2.868 nearest hundredth
    5·1 answer
  • Hal earns $5 a week doing chores for his parents. He also earns $10 a week for each dog.d, he walks,
    8·2 answers
  • A scuba diver is 3 meters below sea level. If the diver descends another 8 meters, what is the scuba diver’s position?
    5·1 answer
  • Riley's math teacher said that each question answered correctly on a test would be worth 3 points. Answer the questions below re
    15·1 answer
  • A student is making cookies for a bake sale. He sells 8 snickerdoodles and 12 chocolate chip
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!