Answer:
Ummm ok?
Step-by-step explanation:
Where’s the question?
<h3>Answer:</h3>
- ABDC = 6 in²
- AABD = 8 in²
- AABC = 14 in²
<h3>Explanation:</h3>
A diagram can be helpful.
When triangles have the same altitude, their areas are proportional to their base lengths.
The altitude from D to line BC is the same for triangles BDC and EDC. The base lengths of these triangles have the ratio ...
... BC : EC = (1+5) : 5 = 6 : 5
so ABDC will be 6/5 times AEDC.
... ABDC = (6/5)×(5 in²)
... ABDC = 6 in²
_____
The altitude from B to line AC is the same for triangles BDC and BDA, so their areas are proportional to their base lengths. That is ...
... AABD : ABDC = AD : DC = 4 : 3
so AABD will be 4/3 times ABDC.
... AABD = (4/3)×(6 in²)
... AABD = 8 in²
_____
Of course, AABC is the sum of the areas of the triangles that make it up:
... AABC = AABD + ABDC = 8 in² + 6 in²
... AABC = 14 in²
Answer:
The P-value method and the classical method are not equivalent to the confidence interval method in that they may yield different results ( A )
Step-by-step explanation:
The False statement about using the confidence interval method when testing a claim about μ when σ is unknown is ; The P-value method and the classical method are not equivalent to the confidence interval method in that they may yield different results
This is because sometimes the values gotten from the p-value and confidence interval differs and this occurs mostly when the sample size is very small.
Assume that the amount needed from the 5% solution is x and that the amount needed from the 65% solution is y.
We are given that, the final solution should be 42 ml, this means that:
x + y = 42 ...........> equation I
This can also be written as:
x = 42-y .......> equation II
We are also given that the final concentration should be 45%, this means that:
5% x + 65% y = 45% (x+y)
0.05x + 0.65y = 0.45(x+y)
We have x+y = 42 from equation I, therefore:
0.05x + 0.65y = 0.45(42)
0.05x + 0.65y = 18.9 .........> equation III
Substitute with equation II in equation III as follows:
0.05x + 0.65y = 18.9
0.05(42-y) + 0.65y = 18.9
2.1 - 0.05y + 0.65y = 18.9
0.6y = 18.9 - 2.1
0.6y = 16.8
y = 28 ml
Substitute with y in equation II to get x as follows:
x = 42-y
x = 42 - 28
x = 14 ml
Based on the above calculations:
amount of 5% solution = x = 14 ml
amount of 65% solution = y = 28 ml
The correct choice is:
The teacher will need 14 mL of the 5% solution and 28 mL of the 65% solution.