Answer:
kinetic energy is energy possessed due to its motion while potential energy is energy possessed by a body by virtue of its position relative to others
Answer: 0.0 grams
Explanation:
To calculate the moles, we use the equation:

a) moles of butane

b) moles of oxygen


According to stoichiometry :
2 moles of butane require 13 moles of 
Thus 0.09 moles of butane will require =
of 
Butane is the limiting reagent as it limits the formation of product and oxygen is present in excess as (1.02-0.585)=0.435 moles will be left.
Thus all the butane will be consumed and 0.0 grams of butane will be left.
E answer is -60.57 = -60.6 KJ.
CaC2(s) + 2 H2O(l) ---> Ca(OH)2(s) +C2H2(g) H= -127.2 KJ
Hf C2H2 = 226.77
Hf Ca(OH)2 = -986.2
<span>Hf H2O = -285.83
Now,
</span><span>add them up. 226.77 - 986.2 + (2*285.83) = -187.77
</span><span>Add back the total enthalpy that is given in the question
-187.77+127.2 = -60.57
</span>
Answer:
4.5moles
Explanation:
First, let us balance the equation given from the question. This is illustrated below:
KClO3 —> KCl + O2
There are 2 atoms of O on the right side and 3 atoms on the left. It can be balance by putting 2 in front of KClO3 and 3 in of O2 as shown below
2KClO3 —> KCl + 3O2
Now, we have 2 atoms each of K and Cl on the left side and 1atom each of K and Cl on the right. It can be balance by putting 2 in front of KCl as shown below:
2KClO3 —> 2KCl + 3O2
Now the equation is balanced.
From the balanced equation,
2 moles of KClO3 produced 3 moles of O2.
Therefore, 3 moles of KClO3 will produce = (3 x 3) /2 = 4.5moles of O2.
Therefore 3 moles of KClO3 will produce 4.5 moles of O2