<h2>Answer:</h2><h3>The temperature of the gas: V</h3>
The temperature of gas is a variable quantity. It can be changed by changing energy or pressure of gas.
<h3>The amount of gas in the tube (in terms of mass and moles): C</h3>
It is a constant entity. As mass of gas once taken can not be changed by changing temperature, pressure etc.
<h3>The radius of the tube: C</h3>
The radius of tube cannot change at any rate.
<h3>The temperature of the gas (changed by the water surrounding it): V</h3>
It can be changed by changing the temperature of water surrounding it.
<h3>The type of gas: C</h3>
It can never be changed.
<h3>The pressure of the gas: V</h3>
It can be changed by simply changing temperature and volume of gas.
Answer:
Final pressure in (atm) (P1) = 6.642 atm
Explanation:
Given:
Initial volume of gas (V) = 12.5 L
Pressure (P) = 784 torr
Temperature (T) = 295 K
Final volume (V1) = 2.04 L
Final temperature (T1) = 310 K
Find:
Final pressure in (atm) (P1) = ?
Computation:
According to combine gas law method:

⇒ Final pressure (P1) = 5,048.18877 torr
⇒ Final pressure in (atm) (P1) = 5,048.18877 torr / 760
⇒ Final pressure in (atm) (P1) = 6.642 atm
Answer:
See explanation
Explanation:
We can describe electrons using four sets of quantum numbers;
principal quantum number (n)
orbital quantum number (l)
magnetic quantum number (ml)
spin quantum number (ms)
Since no two electrons in an atom can have the same value for all four quantum numbers according to Pauli exclusion theory, for the orbitals given one possible value for each quantum number is shown below;
For 1s-
n = 1, l= 0, ml = 0, ms= 1/2
For 2s-
n= 2, l =0, ml=0, ms=1/2
For 1s and 2s orbitals, there is only one possible value for ml which is zero.
Answer:
b. CH₂Cl₂ is more volatile than CH₂Br₂ because of the large dispersion forces in CH₂Br₂
Explanation:
CH₂Cl₂ is more volatile than CH₂Br₂ (b.p of CH₂Cl₂ = 39,6 °C; b.p of CH₂Br₂ = 96,95°C). Thus, c. and d. are FALSE
Dipole-dipole interactions in CH₂Cl₂ are greater than the dipole-dipole interactions in CH₂Br₂ because Cl is more electronegative that Br (Cl = 3,16; Br = 2,96). But this mean CH₂Cl₂ is less volatile than CH₂Br₂ but it is false.
There are large dispersion forces in CH₂Br₂ because Br has more electrons and protons than Cl. Large disperson forces mean CH₂Br₂ is less volatile than CH₂Cl₂ and it is true.
I hope it helps!
Answer:
The determination of the nature of the combination of the two separate materials in the original material that looks pure is based on the characteristic of the change process they undergo to become two separate materials.
Therefore, they can know if they initially had a mixture or a compound by the following steps;
1) If the two separated materials can be easily remixed to form the original material, then they likely have a mixture of the two separate materials
2) If the process that results in the formation of the two separate materials, involves the absorption or evolves heat or other forms of energy, then the original substance was a compound
3) If the two newly formed materials is seen to be a permanent change, then the original material was a compound
Explanation: