Answer:
0.488 mol
Explanation:
By the ideal gas law:
PV = nRT
Where P is the pressure, V is the volume, n is the number of moles, R is the gas constant (0.082 atm.L/mol.K), and T is the temperature in K. Thus, after the reaction:
P = 2.92 atm
V = 4.50 L
T = 55.2°C + 273 = 328.2 K
PV = nRT
n = PV/RT
n = (2.92*4.50)/(0.082*328.2)
n = 0.488 mol
Answer:
The amount of mass and matter in all the transformations of the clay ball will remain the same or constant
Explanation:
From the law of conservation of mass we have, for an enclosed system to and from which there is no transfer of matter or energy, mass cannot be created nor destroyed, and remains constant at the given value, but the matter which make up the mass can be changed into different forms
Therefore, the clay ball can be transformed into different shapes and will still posses the same initial mass before the transformation, provided there are no transfer of matter or energy from the clay ball system.
Answer:
It’s is a simple
Explanation:the prokaryotic cell involves a simple process which intern involves one chromosom
Answer:
Theoretical yield of vanadium = 1.6 moles
Explanation:
Moles of
= 1.0 moles
Moles of
= 4.0 moles
According to the given reaction:-

1 mole of
react with 5 moles of 
Moles of Ca available = 4.0 moles
Limiting reagent is the one which is present in small amount. Thus, Ca is limiting reagent. (4.0 < 5)
The formation of the product is governed by the limiting reagent. So,
5 moles of Ca on reaction forms 2 moles of V
1 mole of Ca on reaction for 2/5 mole of V
4.0 mole of Ca on reaction for
mole of V
Moles of V = 1.6 moles
<u>Theoretical yield of vanadium = 1.6 moles</u>
Answer:
3m/s²
Explanation:
Force applied to an object can be calculated thus;
F = ma
Where;
F = force applied (Newtons)
m = mass of substance (kg)
a = acceleration (m/s²)
According to the information provided in this question, F = 12.0 newtons, m = 4.0 kg, a = ?
Derived from F = m.a
We have; a = F/m
a = 12/4
a = 3
The resultant acceleration of the object is 3m/s².