Answer:
dium (a liquid or a gas). This pattern of motion typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume. This pattern describes a fluid at thermal equilibrium, defined by a given temperature. Within such a fluid, there exists no preferential direction of flow (as in transport phenomena). More specifically, the fluid's overall linear and angular momenta remain null over time. The kinetic energies of the molecular Brownian motions, together with those of molecular rotations and vibrations, sum up to the caloric component of a fluid's internal energy (the Equipartition theorem).
Explanation:
When that happens, you get a plasma — the fourth state of matter.
Answer:Answer: The step that is NOT necessary to complete before a cuvette is placed into the spectrophotometer is option B (Write, in ink, either sample or blank on the side of the cuvette to keep track of them)
Explanation: spectrophotometer is an instrument used to measure the light intensity absorbed after being passed through a solution. Before the absorbance of the sample solution, a solvent solution called blank is used for the calibration of the machine and this blank solvent is placed in a cuvette. The procedure usually comes first before the main sample is processed. Therefore there is no need to
Write, in ink, either sample or blank on the side of the cuvette to keep track of them. This is so since sample and blank is not absorbed at the same time by the machine.
Vertical columns are called groups, or families.
They share similar chemical properties.
Answer: <span>have similar chemical properties</span>
Strong electrolytes are completely ionised in solution.
Weak ones are only partially ionised.
Non electrolytes do not form ions