We use the formula:
ΔP = (ΔH / ΔV) ln(T2 / T1)
where,
ΔH = change in enthalpy from solid to liquid = 4810 J/mol
ΔV = change in volume from solid to liquid = 0.55 cm^3/mol
T2 = 620 K, T1 = 600 K
So,
ΔP = (4810 / 0.55) ln(620 / 600)
ΔP = 286.76 J/cm^3
or converting to atm:
<span>ΔP
= 2830 atm</span>
The mass is written as a superscript and the charge is written as a subscript in the isotope notation of element X as follows
.
The isotope notation may also be called the nuclear notation of an element. It helps us to identify what element is represented. It usually comprises of the atomic mass of the element written as a superscript and then the atomic number or charge written as a subscript.
In this case, we have an element with an mass of 292 amu and charge of 119. In this case, the isotope notation of element X is
.
Learn more: brainly.com/question/5838915
Answer: The entire water/ice solution is at the melting/freezing point, 32°F (0°C). Adding rock salt — or any substance that dissolves in water — disrupts this equilibrium.
Explanation: Hope this helps! Have a great day :)
Since the barium ion will be isoelectronic to the nearest noble gas, which is xenon, the electronic configuration for Ba2+ is: [Xe]