Answer: The proteins were no longer soluble in the blood.
Answer:
Evaporation
Explanation:
Heat makes molecules move and eventually evaporate.
Answer:
did you mean moles? If so, answer is down below.
Explanation:
there are 0.106 moles of glucose in 19.1 g of glucose.
The empirical formula CH₂O has a mass [(12 × 1) + (1 × 2) + (16 × 1)] = 30 g/mol
If the empirical formula is 30 g/mol,
and the molecular formula is 60 g/mol
Then the multiple is = 60 g/mol ÷ 30 g/mol
= 2
Therefor the molecular formula is 2(CH₂O) = C₂H₄O₂ (OPTION 2)
Answer: B. It’s a dilute strong base.
Explanation:
1) Definition of acids and bases: as per Bronsted-Lowry model, an acid is a substance that donates hydrogen ions and a base is a substance that accepts hydrogen ions.
Ca(OH)₂ does not have hydrogen ions to donate, but it can accept hydrogen ions to form H₂O according to this equation: H⁺ + OH⁻ → H₂O.
Hence, Ca(OH)₂ is a base.
2) Definition of strong base: a strong base is a base that dissociates completely into metallic and hydroxide ions in aqueous solutions, while a weak base dissociates partially.
Hence, Ca(OH)₂ is a strong base.
3) Definition of dilute: it refers to a solution meaning that the substance is not pure and the concentration is low. Since, the solution the Ca(OH)₂ is 0.02 M means that it is dilute.
Therefore, we have found that the description of 0.02 M Ca(OH)₂ is that is is a dilute strong base (option B).