Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)
Answer:
The scaling factor is 5.
Explanation:
Hello there!
In this case, since the scaling factor is defined as the ratio of the molar mass of the molecular formula (complete) to the empirical formula (simplified), it is possible to compute it for the empirical formula of CH2O whose molar mass is 30 g/mol (12+2+16) as shown below:

Therefore, we can also infer that the molecular formula would be:

Best regards!
Answer:
none of them are equal to one mole
Answer:

Explanation:
The Gibbs free energy in thermodynamics is a potential which is used to calculate maximum of the reversible work which is performed by a specific thermodynamic system at constant temperature (isothermal) as well as pressure (isobaric).
The expression for the change in free energy is:

Answer: Seastars prey on mussels and shellfish which would otherwise have no other natural predators. Herbivorous fish like the butterflyfish pictured to the left prey on marine algae. Without this crucial predator-prey balance, the algae would over-grow, which would then kill coral, as they compete for the same resources.