Answer:
1.43 grams
Explanation:
Fe = 55.8 grams Fe = 1 mole Fe
2.56 • 10^-3 moles Fe / 1 • 55.8 grams Fe / 1 mole Fe = 1.43 grams Fe
Basically, you're just multiplying the molar mass of Fe (iron) by the moles of 2.56 • 10^-3 Fe, to find how many grams are in it.
2.56 • 10^-3 moles Fe = 1.43 grams Fe
Explanation:
Power obtained by harnessing the energy of the suns rays
Answer:
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
Explanation:
Mass of ethylene glycol = m = 100 g
Specific heat capacity of ethylene glycol = c = 3.5 J/g°C
Change in temperature of ethylene glycol = ΔT
Heat loss by the ethylene glycol = Q = 350 J


ΔT = 1°C
1°C temperature change will be observed if a sample of 100 g of ethylene glycol antifreeze solution.
<h3>
Answer:</h3>
20.62 Kilo-joules
<h3>
Explanation:</h3>
- The Enthalpy of combustion of ethyl alcohol is -950 kJ/mol.
- This means that 1 mole of ethyl alcohol evolves a quantity of heat of 950 Joules when burned.
Molar mass of ethyl ethanol = 46.08 g/mol
Therefore;
46.08 g of C₂H₅OH evolves heat equivalent to 950 kilojoules
We can calculate the amount of heat evolved by 1 g of C₂H₅OH
Heat evolved by 1 g of C₂H₅OH = Molar enthalpy of combustion ÷ Molar mass
= 950 kJ/mol ÷ 46.08 g/mol
= 20.62 Kj/g
Therefore, a gram of C₂H₅OH will evolve 20.62 kilo-joules of heat
Ionic reaction when a metal and non metal are together a molecule is when a metal abs metal react hope this helps