Answer: Choice C) 2
----------------------------------------------
Explanation:
Using the law of sines, we get
sin(B)/b = sin(C)/c
sin(18)/7 = sin(C)/11
0.0441452849107 = sin(C)/11
11*0.0441452849107 = sin(C)
0.4855981340177 = sin(C)
sin(C) = 0.4855981340177
C = arcsin(0.4855981340177) or C = 180-arcsin(0.4855981340177)
C = 29.0516679549861 or C = 150.948332045013
There are two possibilities for angle C because of something like sin(30) = sin(150) = 1/2 = 0.5
Those approximate values of C round to
C = 29.05 and C = 150.95
If C = 29.05, then angle A is
A = 180-B-C
A = 180-18-29.05
A = 132.95
Making this triangle possible since angle A is a positive number
If C = 150.95, then angle A is
A = 180-B-C
A = 180-18-150.95
A = 11.05
making this triangle possible since angle A is a positive number
There are two distinct triangles that can be formed.
One triangle is with the angles: A = 132.95, B = 18, C = 29.05
The other triangle is with the angles: A = 11.05, B = 18, C = 150.95
The decimal values are approximate
These are all linear equations:<span>y = 2x + 1
5x = 6 + 3y
<span>y/2 = 3 − x</span></span>
Answer:
Step-by-step explanation: first you have to add up the point that each scored altogether and Caitlin scored 300 and Justin scored 250
Answer:
u=18
Step-by-step explanation:
u/3 =6
Multiply each side by 3
u/3*3 =6*3
u = 18
The second matrix
represents the triangle dilated by a scale factor of 3.
Step-by-step explanation:
Step 1:
To calculate the scale factor for any dilation, we divide the coordinates after dilation by the same coordinated before dilation.
The coordinates of a vertice are represented in the column of the matrix. Since there are three vertices, there are 2 rows with 3 columns. The order of the matrices is 2 × 3.
Step 2:
If we form a matrix with the vertices (-2,0), (1,5), and (4,-8), we get
![\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%264%5C%5C0%265%26-8%5Cend%7Barray%7D%5Cright%5D)
The scale factor is 3, so if we multiply the above matrix with 3 throughout, we will get the matrix that represents the vertices of the triangle after dilation.
Step 3:
The matrix that represents the triangle after dilation is given by
![3\left[\begin{array}{ccc}-2&1&4\\0&5&-8\end{array}\right] = \left[\begin{array}{ccc}3(-2)&3(1)&3(4)\\3(0)&3(5)&3(-8)\end{array}\right] = \left[\begin{array}{ccc}-6&3&12\\0&15&-24\end{array}\right]](https://tex.z-dn.net/?f=3%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%261%264%5C%5C0%265%26-8%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%28-2%29%263%281%29%263%284%29%5C%5C3%280%29%263%285%29%263%28-8%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-6%263%2612%5C%5C0%2615%26-24%5Cend%7Barray%7D%5Cright%5D)
This is the second option.