1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
egoroff_w [7]
3 years ago
15

The quotient below is shown without the decimal point. Use number sense to place the decimal point correctly. 370 ÷ 2.5 ÷ 1.6 =

925
Mathematics
1 answer:
Tema [17]3 years ago
4 0

Answer:

92.5

Step-by-step explanation:

When you would look at this you would just see that there are if you divide 370 by 2 and 2 again you will not get a small number so the only logical answer is 92.5

You might be interested in
What is a segment bisector
ruslelena [56]

A segment bisector is a segment, ray, line, or plane that intersects a given segment at its midpoint.

For example, in the diagram shown, line SQ bisects segment PR because line SQ intersects segment PR at its midpoint which is Q.

7 0
3 years ago
1. The height of a triangle is 6 m more than its base. The area of the triangle is 56 m². What is the length of the base? Enter
Elodia [21]
Answers:
1. 8 m 
2. 17 m
3. 7 cm
4. 2 s

Explanations:

1. Let x = length of the base
          x + 6 = height of the base

    Then, the area of the triangle is given by

    (Area) = (1/2)(base)(height)
       56 = (1/2)(x)(x + 6)
       56 = (1/2)(x²  + 6x) 
     
    Using the symmetric property of equations, we can interchange both sides      of equations so that 

    (1/2)(x²  + 6x) = 56
    
    Multiplying both sides by 2, we have
   
    x² + 6x = 112
    
    The right side should be 0. So, by subtracting both sides by 112, we have 

    x² + 6x - 112 = 112 - 112
    x² + 6x - 112 = 0

    By factoring, x² + 6x - 112 = (x - 8)(x + 14). So, the previous equation           becomes

    (x - 8)(x +14) = 0

   So, either 

    x - 8 = 0 or x + 14 = 0

   Thus, x = 8 or x = -14. However, since x represents the length of the base and the length is always positive, it cannot be negative. Hence, x = 8. Therefore, the length of the base is 8 cm.

2. Let x = length of increase in both length and width of the rectangular garden

Then,

14 + x = length of the new rectangular garden
12 + x = width of the new rectangular garden

So, 

(Area of the new garden) = (length of the new garden)(width of the new garden) 

255 = (14 + x)(12 + x) (1)

Note that 

(14 + x)(12 + x) = (x + 14)(x + 12)
                          = x(x + 14) + 12(x + 14)
                          = x² + 14x + 12x + 168 
                          = x² + 26x + 168

So, the equation (1) becomes

255 = x² + 26x + 168

By symmetric property of equations, we can interchange the side of the previous equation so that 

x² + 26x + 168 = 255

To make the right side becomes 0, we subtract both sides by 255:

x² + 26x + 168 - 255 = 255 - 255
x² + 26x - 87 = 0 

To solve the preceding equation, we use the quadratic formula.

First, we let

a = numerical coefficient of x² = 1

Note: if the numerical coefficient is hidden, it is automatically = 1.

b = numerical coefficient of x = 26
c = constant term = - 87

Then, using the quadratic formula 

x =  \frac{-b \pm  \sqrt{b^2 - 4ac} }{2a} =  \frac{-26 \pm  \sqrt{26^2 - 4(1)(-87)} }{2(1)}  
\newline x =  \frac{-26 \pm  \sqrt{1,024} }{2}
\newline
\newline x =  \frac{-26 \pm  32 }{2}

So, 

x = \frac{-26 + 32 }{2} \text{  or } x = \frac{-26 - 32 }{2}
\newline x = \frac{6 }{2} \text{  or } x = \frac{-58 }{2}
\newline \boxed{ x = 3 \text{  or } x = -29}

Since x represents the amount of increase, x should be positive.

Hence x = 3.

Therefore, the length of the new garden is given by 

14 + x = 14 + 3 = 17 m.

3. The area of the shaded region is given by

(Area of shaded region) = π(outer radius)² - π(inner radius)²
                                       = π(2x)² - π6²
                                       = π(4x² - 36)

Since the area of the shaded region is 160π square centimeters,

π(4x² - 36) = 160π

Dividing both sides by π, we have 

4x² - 36 = 160

Note that this equation involves only x² and constants. In these types of equation we get rid of the constant term so that one side of the equation involves only x² so that we can solve the equation by getting the square root of both sides of the equation.

Adding both sides of the equation by 36, we have

4x² - 36 + 36 = 160 + 36
4x² = 196 

Then, we divide both sides by 4 so that

x² = 49

Taking the square root of both sides, we have

x = \pm 7

Note: If we take the square root of both sides, we need to add the plus minus sign (\pm) because equations involving x² always have 2 solutions.

So, x = 7 or x = -7.

But, x cannot be -7 because 2x represents the length of the outer radius and so x should be positive.

Hence x = 7 cm

4. At time t, h(t) represents the height of the object when it hits the ground. When the object hits the ground, its height is 0. So,
 
h(t) = 0   (1)

Moreover, since v_0 = 27 and h_0 = 10, 

h(t) = -16t² + 27t + 10   (2)

Since the right side of the equations (1) and (2) are both equal to h(t), we can have

-16t² + 27t + 10 = 0

To solve this equation, we'll use the quadratic formula.

Note: If the right side of a quadratic equation is hard to factor into binomials, it is practical to solve the equation by quadratic formula. 

First, we let

a = numerical coefficient of t² = -16 
b = numerical coefficient of t = 27
c = constant term = 10

Then, using the quadratic formula 

t = \frac{-b \pm \sqrt{b^2 - 4ac} }{2a} = \frac{-27 \pm \sqrt{27^2 - 4(-16)(10)} }{2(-16)} \newline t = \frac{-27 \pm \sqrt{1,369} }{-32} \newline \newline t = \frac{-27 \pm 37 }{32}

So, 

t = \frac{-27 + 37 }{-32} \text{ or } t = \frac{-27 - 37 }{-32} \newline t = \frac{-10}{32}  \text{ or } t = \frac{-64 }{-32}   \newline \boxed{ t = -0.3125 \text{ or } t = 2}

Since t represents the amount of time, t should be positive. 

Hence t = 2. Therefore, it takes 2 seconds for the object to hit the ground.


 




 





3 0
3 years ago
Read 2 more answers
What is the distance around a triangle that has sides measuring 2/18 feet 3/12 feet and 2/12 feet
Minchanka [31]
The distance around an object is called the perimeter. To get the perimeter, you add up the sides. So, 2/18 + 3/12 + 2/12 = your answer.


4 0
3 years ago
PLEASE HELP ASAP!!!
ZanzabumX [31]

Answer:

should be 2 excluding the start (origin)

Step-by-step explanation:

3 0
3 years ago
What is the volume of the following rectangular prism?
nika2105 [10]

Answer:

44/3

Step-by-step explanation:

V=L*W*H

WH=22/3

V=2*(22/3)

6 0
3 years ago
Other questions:
  • Randomly take 4 cards from a deck of 52 cards, find the probability that the 4 cards are all aces
    9·1 answer
  • It costs $56 to rent a tent for 7 days. Write an equation that represents the cost to rent a camping tent for xdays.
    5·1 answer
  • How many 10 digit telephone numbers are possible if the first digit cannot be zero?
    14·1 answer
  • 224 is what % of 640?
    9·2 answers
  • Combine like terms to create an equivalent expression.
    9·1 answer
  • If i have 20 bucks and i give 15 how much do i have now
    5·2 answers
  • Ben is going to an amusement park with his scout troop. He has $80 in his wallet. If admission costs $18.95, a book of ride tick
    6·1 answer
  • If triangle RST is within Quadrant 4 and cos R= √3/2, what is the value of cotR
    13·1 answer
  • A freezer can be bought on hire purchase by making a deposit of 15% of the cash price which is $2 975.
    14·1 answer
  • when comparing condition means in an experiment with more than two conditions, why should you use an analysis of variance instea
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!