I think the answer is b because I just calculated it and got something closer to that number
You need to divide this problem into two parts
first part is when it was accelerating.. that time use the equation of motion and calculate what is the total angle covered and hence you get the number of revolutions
then find the time of acceleration..so you ll understand for how much did you do the above calculation
for the rest of the time, the speed is constant (final angular speed).. so now you just use
w= theta/ time.. and get theta and again calculate the number of revolutions!
Answer:
f=7
Step-by-step explanation:
1. distribute 4 too .5 and .25
2. subtract the f from each side
3.combine like terms
this leaves you with f=6+1 which is 7
Answer:
a. 12 feet b. 12 feet 0.5 inches c. 8.33 %
Step-by-step explanation:
a. How far out horizontally on the ground will it protrude from the building?
Since the rise to run ratio is 1:12 and the building is 12 inches off the ground, let x be the horizontal distance the ramp protrudes.
So, by ratios rise/run = 1/12 = 12/x
1/12 = 12/x
x = 12 × 12
x = 144 inches
Since 12 inches = 1 foot, 144 inches = 144 × 1 inch = 144 × 1 foot/12 inches = 12 feet
b. How long should the ramp be?
The length of the ramp, L is gotten from Pythagoras' theorem since the ramp is a right-angled triangle with sides 12 inches and 144 inches respectively.
So, L = √(12² + 144²)
= √[12² + (12² × 12²)]
= 12√(1 + 144)
= 12√145
= 12 × 12.042
= 144.5 inches
Since 12 inches = 1 foot, 144.5 inches = 144 × 1 inch + 0.5 inches = 144 × 1 foot/12 inches + 0.5 inches = 12 feet 0.5 inches
c. What percent grade is the ramp?
The percentage grade of the ramp = rise/run × 100 %
= 12 inches/144 inches × 100 %
= 1/12 × 100 %
= 0.0833 × 100 %
= 8.33 %