Answer:
Arc length ![=\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx](https://tex.z-dn.net/?f=%3D%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5B%284.5sin%284.5x%29%29%5D%5E2%7D%5C%20dx)
Arc length 
Step-by-step explanation:
The arc length of the curve is given by ![\int_a^b \sqrt{1+[f'(x)]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_a%5Eb%20%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E2%7D%5C%20dx)
Here,
interval ![[0, \pi]](https://tex.z-dn.net/?f=%5B0%2C%20%5Cpi%5D)
Now, 
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( [-cos(t)]_0^{4.5x} \right )](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5Cleft%20%28%20%5B-cos%28t%29%5D_0%5E%7B4.5x%7D%20%5Cright%20%29)


Now, the arc length is ![\int_0^{\pi} \sqrt{1+[f'(x)]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E2%7D%5C%20dx)
![\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5B%284.5sin%284.5x%29%29%5D%5E2%7D%5C%20dx)
After solving, Arc length 
Answer:
72º
Step-by-step explanation:
<em>Hey there!</em>
Well the interior of a pentagon's angle is 108º,
so we do,
180 - 108 = 72º
<em>Hope this helps :)</em>
Answer:
10: 1
Step-by-step explanation:
We have to make the dogs art of the ratio equal first.
5:3>30:18
6:1> 180: 30
After this we have to simplify the ratio.
Cats to fish is 180:18 (divide by 2) 90:9 (then by 3) 30 : 3 (and finally by 3 again) 10 : 1