It was disproved by the discovery of the electrons
Answer:
Electrons at the outermost energy level of an atom are called valence electrons. They determine many of the properties of an element. That's because these electrons are involved in chemical reactions with other atoms. Shared electrons bind atoms together to form chemical compounds.
Explanation:
Answer:
He developed the concept of concentric electron energy levels
Explanation:
Before Bohr's model, Rutherford's model was proposed. This model explains most of the properties of the atom but failed to explain the stability of the atom.
As per Rutherford's model, electrons revolve around the nucleus in the orbit.
But revolving electron in their orbit around nucleus would give up energy and so gradually move towards the nucleus and therefore, eventually collapse.
Bohr's proposed that the electrons around the nucleus move orbit of fixed energy called "stationary states". Electrons in these stationary states do not radiate energy.
Therefore, proposal of concentric electron energy levels refine the atomic models.
During the electrolysis of the molten lithium chloride, the Lithium ions (Li⁺) at the cathode undergoes reduction, and the electron configuration of lithium becomes 1s²2s¹.
<h3>What is electrolysis?</h3>
Electrolysis can be described as the process in which the electric current is passed through the chemical compound to break them. In this process, the atoms and ions are interchanged by the addition or removal of electrons.
The ions are allowed to move freely in this process. When an ionic compound is melted or dissolved in water then ions are produced which can move freely.
During the electrolysis of molten lithium chloride, the lithium ions reach the cathode and accept the electrons while chloride ions reach at anode and loss electrons to become chlorine gas.
At anode : 2 Cl⁻ → Cl₂ + 2e⁻
At cathode: 2 Li⁺ + 2e⁻ → Li
Learn more about electrolysis, here:
brainly.com/question/12054569
#SPJ1
Answer:
heat flow
Explanation:
heat flow moves to a higher temperature to a lower temperature