The answer for the following problem is mentioned below.
- <u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules.</em></u>
Explanation:
Given:
mass of calcium phosphate (
) = 125.3 grams
We know;
molar mass of calcium phosphate (
) = (40×3) + 3 (31 +(4×16))
molar mass of calcium phosphate (
) = 120 + 3(95)
molar mass of calcium phosphate (
) = 120 +285 = 405 grams
<em>We also know;</em>
No of molecules at STP conditions(
) = 6.023 × 10^23 molecules
To solve:
no of molecules present in the sample(N)
We know;
N÷
=
N =(405×6.023 × 10^23) ÷ 125.3
N = 19.3 × 10^23 molecules
<u><em>Therefore number of molecules(N) present in the calcium phosphate sample are 19.3 × 10^23 molecules</em></u>
The temperature when ice melts is 32 degrees Fahrenheit.
2.77mg caffeine / 1oz12oz / 1canLethal dose: 10.0g caffeine = 10,000mg caffeine First, find how much caffeine is in one can of soda, then divide that amount by the lethal dose to find the number of cans. (2.77mg caffeine / 1oz) * (12oz / 1can) = 33.24mg caffeine / 1can. (10,000mg caffeine) * (1can / 33.24mg caffeine) = 300.84 cans. Since we can't buy parts of a can of soda, then we have to round up to 301 cans. Notice how all the values were set up as ratios and how the units cancelled.
Answer:
Explanation: C is the answer
Erm, I think when they are little. When they are just born.