Answer:
FADH2 is a reducing agent.
FAD is an oxidizing agent.
Explanation:
The full form of FAD is flavin adenine dinucleotide. It is mainly a redox-active coenzyme which is associated with the different proteins and is involved with the enzymatic reactions in the metabolism.
FAD is obtained by donating or accepting electrons.
In the citric acid cycle,
succinate + FAD → fumarate +
Thus we see that FAD is an oxidizing agent while is a reducing agent.
ツ here your answer
- A)Potassium bromide(aq) + Barium iodide(aq) → Potassium iodide(aq) + Barium bromide(s)
- 2KBr(aq)+BaI2(aq) → 2KI(aq)+BaBr2(s)
- B)Balance the Chemical Equation for the reaction of calcium carbonate with hydrochloric acid:
- CaCO3+ HCl -> CaCl2 + CO2 + H2O To balance chemical equations we need to look at each element individually on both sides of the equation. calcium carbonate is a chemical compound with the formula CaCO3.
<em><u>M</u></em><em><u>a</u></em><em><u>r</u></em><em><u>k</u></em><em><u> </u></em><em><u>m</u></em><em><u>e</u></em><em><u> </u></em><em><u>i</u></em><em><u>n</u></em><em><u> </u></em><em><u>b</u></em><em><u>r</u></em><em><u>a</u></em><em><u>i</u></em><em><u>n</u></em><em><u>l</u></em><em><u>i</u></em><em><u>s</u></em><em><u>t</u></em>
Explanation:
Atoms never gain protons; they become positively charge only by losing electrons. A positive ion is called a cation (pronounced: CAT-eye-on). You may have notice that the number of neutrons in each of these ions was not specified.
The fomula is NH4 (1+)
There are only two elements N and H.
As per oxidation state rules, the most electronegative element will have a negative oxidation state and the other element will have a positive oxidation state.
N is more electronative than H, so H will have a positive oxidation state and nitrogen will have a negative oxidation state.
You can also use the rule that states the hydrogen mostly has 1+ oxidation state,except when it is bonded to metals.
In conclusion the oxidation state of H in NH4 (1+) is 1+.
Now you must know that the sum of the oxidations states equals the charge of the ion, which in this case is 1+.
That implies that 4* (1+) + x = 1+
=> x = (1+) - 4(+) = 3-
Answer: the oxidation state of N is 3-, that is the option b.