Explanation:
Weight is 120 pounds and mass is 54 kg
The mass of an object is same everywhere. If we were on the moon, its mass will remain to be 54 kg.
Weight of an object is given by :

g is acceleration due to gravity on that surface
For moon, it is 1/6 the gravitational force on Earth, g = 1.63 m/s²
1 pound = 4.45 N
It means my weight is 533.78 N
On the surface of Moon is will be :

Use the ideal gas equation PV=nRT. You can compare before and after using P1V1/n1T1=P2V2/n2T2. Since the number of moles remains constant you can disregard moles from the equation and use pressure, volume and temp. Make sure your pressure is converted to atmospheres, your volume is in liters, and your temperature is in kelvins.
Answer:
Moles of carbon dioxide gas is 0.584 moles.
Mass of 0.584 moles of carbon dioxide gas is 25.7 g
Explanation:
Using ideal gas equation
PV = nRT
where,
P = Pressure of gas = 
V = Volume of gas = 30.0 L
n = number of moles of gas = ?
R = Gas constant = 0.0821 L.atm/mol.K
T = Temperature of gas = 27°C = 300.15 K
Putting values in above equation, we get:

Moles of carbon dioxide gas = 0.584 moles
Mass of 0.584 moles of carbon dioxide gas = 0.584 mol × 44 g/mol = 25.69 g ≈ 25.7 g
Tap water and rain water are both homogeneous, even though they may have different levels of dissolved minerals and gases. A bottle of alcohol is a man-made homogeneous mixture, from a fine Italian wine to a glass of Scotch whisky. In the human body, blood plasma is an example of a homogeneous mixture.
Answer:
2.06 × 10⁻¹⁰
Explanation:
Let's consider the solution of a generic compound AB₂.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
We can relate the molar solubility (S) with the solubility product constant (Kps) using an ICE chart.
AB₂(s) ⇄ A²⁺(aq) + 2B⁻(aq)
I 0 0
C +S +2S
E S 2S
The solubility product constant is:
Kps = [A²⁺] × [B⁻]² = S × (2S)² = 4 × S³ = 4 × (3.72 × 10⁻⁴)³ = 2.06 × 10⁻¹⁰