Not all acid-catalyzed conversions of alcohols to alkyl halides proceed through the formation of carbocations. Primary alcohols and methanol react to form alkyl halides under acidic conditions by an SN2 mechanism.
Not all acid-catalyzed conversions of alcohols to alkyl halides proceed through the formation of carbocations. Primary alcohols and methanol react to form alkyl halides under acidic conditions by an SN2 mechanism.
In these reactions the function of the acid is to produce a protonated alcohol. The halide ion then displaces a molecule of water (a good leaving group) from carbon; this produces an alkyl halide:
Again, acid is required. Although halide ions (particularly iodide and bromide ions) are strong nucleophiles, they are not strong enough to carry out substitution reactions with alcohols themselves. Direct displacement of the hydroxyl group does not occur because the leaving group would have to be a strongly basic hydroxide ion:
We can see now why the reactions of alcohols with hydrogen halides are acid-promoted.
Carbocation rearrangements are extremely common in organic chemistry reactions are are defined as the movement of a carbocation from an unstable state to a more stable state through the use of various structural reorganizational "shifts" within the molecule. Once the carbocation has shifted over to a different carbon, we can say that there is a structural isomer of the initial molecule. However, this phenomenon is not as simple as it sounds.
<em>-</em><em> </em><em>BRAINLIEST</em><em> answerer</em>
ionic bond is formed when two oppositely charged ions attract one another.A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms.
Answer:
Okay, I think I may actually have an answer for you. I would go with C, "The number of particles able to undergo a chemical reaction is less than the number that is not able to."
Explanation:
I just took a quiz with a similar question, and B is the only gas particle that is able to react. This cancels out all the other answers, as A and B are obviously incorrect based on that information, and it rules out D because T1 is the only sample with a particle able to react. I hope this helps!
Answer:
Vascular tissue transports water, minerals, and sugars to different parts of the plant. Vascular tissue is made of two specialized conducting tissues: xylem and phloem. Xylem tissue transports water and nutrients from the roots to different parts of the plant, and also plays a role in structural support in the stem.
Explanation:
HOPE THIS HELPS!