<h2>Electrostatic Potential Decreases</h2>
Explanation:
- If the spacing between two closely spaced oppositely charged parallel plates is decreased the electrostatic potential difference between the plates will decrease.
- An electrostatic potential that is also referred to as the electric field potential or potential drop is the amount of work required to replace a unit of charge from a reference point to a specific point inside the electric field without any change in acceleration.
- Therefore, if the distance will decrease between oppositely charged plates there will be more affinity to attract which will reduce the amount of work done thus decreasing the electric potential
∴ The Correct option is (b)
Answer:
hello I don't know the answer sorry next time I will try
If you have no way to accurately measure all of the object's bumps and dimples, then the only way to measure its volume is by means of fluid displacement.
-- Put some water into a graduated (marked) container, read the amount of water, drop the object into the container, and read the new volume in the container. The volume of the object is the difference between the two readings.
-- Alternatively, stand an unmarked container in a large pan, and fill it to the brim. Slowly slowly lower the object into the unmarked container, while the pan catches the water that overflows from it. When the object is completely down in the container, carefully remove the container from the pan, and measure the volume of the water in the pan. It's equal to the volume of the object.
Answer:
a = 9.8 m/s²
Explanation:
Acceleration due to gravity on Earth is constant, which is 9.8 m/s²
Answer: 12Mg/h
Explanation:
Let the spring is compressed by a distance x,before the lift stops,then
Mg(h+x)= 1/2 kx^2 ............... 1
Kx - Mg = M ( 5g ) ............ 2
Make x the subject in equation 2
Kx = 5Mg + Mg
Kx = 6Mg
x = 6Mg/k ............ 3
Put equation 3 into 1
Mg ( h + x ) = 1/2 kx^2
Mgh + Mgx = 1/2kx^2
Mgh + Mg × 6Mg/k = 1/2k × ( 6Mg/k )^2
Mgh + Mg× 6Mg/k = 1/2k 36M^2g^2/ k^2
h =18Mg/k - 6Mg/h
K = 12Mg/h