Answer:
W ≅ 292.97 J
Explanation:
1)What is the work done by tension before the block goes up the incline? (On the horizontal surface.)
Workdone by the tension before the block goes up the incline on the horizontal surface can be calculated using the expression;
W = (Fcosθ)d
Given that:
Tension of the force = 62 N
angle of incline θ = 34°
distance d =5.7 m.
Then;
W = 62 × cos(34) × 5.7
W = 353.4 cos(34)
W = 353.4 × 0.8290
W = 292.9686 J
W ≅ 292.97 J
Hence, the work done by tension before the block goes up the incline = 292.97 J
Answer:
V (initial vertical velocity) = 45.4 sin 31.2 = 23.52 m/s
1/2 m V^2 = m g h conservation of energy
h = V^2 / (2 g) = 23.52^2 / 19.6 = 28.2 m max height
Check:
t = 28.2 / 9.8 = 2.88 sec time to reach max height
h = 23.52 * 2.88 - 1/2 g 2.88^2 = 27.1 m
Answer:
Acceleration and velocity Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to accelerate in the direction of the force.
To solve this problem it is necessary to apply the concepts related to the Kinetic Energy and the Energy Produced by the heat loss. In mathematical terms kinetic energy can be described as:

Where,
m = Mass
v = Velocity
Replacing we have that the Total Kinetic Energy is



On the other hand the required Energy to heat up t melting point is


Where,
m = Mass
Specific Heat
Change at temperature
Latent heat of fussion
Heat required to heat up to melting point,




The energy required to melt is larger than the kinetic energy. Therefore the heat of fusion of lead would be 327 ° C: The melting point of lead.
Answer:
The distance will be x = 41.7 [m]
Explanation:
We must first find the components in the x & y axes of the initial velocity.
![(v_{o})_{x} = 15*cos(20)= 14.09[m/s]\\(v_{o})_{y} = 15*sin(20)= 5.13[m/s]](https://tex.z-dn.net/?f=%28v_%7Bo%7D%29_%7Bx%7D%20%3D%2015%2Acos%2820%29%3D%2014.09%5Bm%2Fs%5D%5C%5C%28v_%7Bo%7D%29_%7By%7D%20%3D%2015%2Asin%2820%29%3D%205.13%5Bm%2Fs%5D)
The acceleration is the gravity acceleration therefore.
g = 9.81 [m/s^2]
Now we can calculate how long it takes to fall.
![y=(v_{o})_{y}*t-0.5*g*t^2\\-28 = 5.13*t-0.5*9.81*t^2\\-28=-4.905*t^2+5.13*t\\4.905*t^2-5.13*t=28\\t = 2.96[s]](https://tex.z-dn.net/?f=y%3D%28v_%7Bo%7D%29_%7By%7D%2At-0.5%2Ag%2At%5E2%5C%5C-28%20%3D%205.13%2At-0.5%2A9.81%2At%5E2%5C%5C-28%3D-4.905%2At%5E2%2B5.13%2At%5C%5C4.905%2At%5E2-5.13%2At%3D28%5C%5Ct%20%3D%202.96%5Bs%5D)
With this time we can find the horizontal distance that runs the projectile.
![x=(v_{o})_{x}*t\\x=14.09*2.96\\x=41.7[m]](https://tex.z-dn.net/?f=x%3D%28v_%7Bo%7D%29_%7Bx%7D%2At%5C%5Cx%3D14.09%2A2.96%5C%5Cx%3D41.7%5Bm%5D)