m = mass of the box
N = normal force on the box
f = kinetic frictional force on the box
a = acceleration of the box
μ = coefficient of kinetic friction
perpendicular to incline , force equation is given as
N = mg Cos30 eq-1
kinetic frictional force is given as
f = μ N
using eq-1
f = μ mg Cos30
parallel to incline , force equation is given as
mg Sin30 - f = ma
mg Sin30 - μ mg Cos30 = ma
"m" cancel out
a = g Sin30 - μ g Cos30
inserting the values
1.20 = (9.8) Sin30 - (9.8) Cos30 μ
μ = 0.44
Calculated weight (by experimentally) of Earth is 5.972 × 10²⁴ N
Hope this helps!
Answer:
Option (C) is the answer
Explanation:
may be it is possible if that we stand so far
Answer:
option B. Limestone
<em>h</em><em>o</em><em>p</em><em>e</em><em>f</em><em>u</em><em>l</em><em>l</em><em>y</em><em>,</em>
<em>Z</em><em>a</em><em>r</em><em>a</em><em>♡</em>
Answer:
8.6 m
Explanation:
The motion of a soccer ball is a motion of a projectile, with a uniform motion along the horizontal (x-) direction and an accelerated motion along the vertical (y-) direction, with constant acceleration
towards the ground (we take upward as positive direction, so acceleration is negative).
The initial velocity along the vertical direction is

Now we can consider the motion along the vertical direction only. the vertical velocity at time t is given by:

At the point of maximum height,
, so we can find the time t at which the ball reaches the maximum height:

And now we can use the equation of motion along the y-axis to find the vertical position of the ball at t=1.33 s, which corresponds to the maximum height of the ball:
