Answer:
The specific heat capacity is q_{L}=126.12kJ/kg
The efficiency of the temperature is n_{TH}=0.67
Explanation:
The p-v diagram illustration is in the attachment
T_{H} means high temperature
T_{L} means low temperature
The energy equation :
= R*
in(
/
)



The specific heat capacity:
=q_{h}*(T_{L}/T_{H})
q_{L}=378.36 * (400/1200)
q_{L}=378.36 * 0.333
q_{L}=126.12kJ/kg
The efficiency of the temperature will be:
=1 - (
/
)
n_{TH}=1-(400/1200)
n_{TH}=1-0.333
n_{TH}=0.67
Complete question:
A train has an initial velocity of 44m/s and an acceleration of -4m/s². calculate its velocity after 10s ?
Answer:
the final velocity of the train is 4 m/s.
Explanation:
Given;
initial velocity of the train, u = 44 m/s
acceleration of the train, a = -4m/s² (the negative sign shows that the train is decelerating)
time of motion, t = 10 s
let the final velocity of the train = v
The final velocity of the train is calculated using the following kinematic equation;
v = u + at
v = 44 + (-4 x 10)
v = 44 - 40
v = 4 m/s
Therefore, the final velocity of the train is 4 m/s.
Answer:
t = 1.05 s
Explanation:
Given,
The distance between your vehicle and car, 100 ft
The constant speed of your vehicle, u = 95 ft/s
Since, the velocity is constant, a =0
If the car stopped suddenly, time left for you to hit the brake, t = ?
Using the second equation of motion,
S = ut + ½ at²
Substituting the given values in the equation
100 = 95 x t
t = 100/95
= 1.05 s
Hence, the time left for you to hit the brakes and stop before rear ending them, t = 1.05 s
Answer: A 120 metros por segundo
Explanation: multiplicas la velocidad por el tiempo
Answer: No, water in the ocean wouldn't have tides wouldn't be as strong anymore.
Explanation: