Answer: 1200kg
Explanation:
KE = (1/2)mv^2
103kJ = 103000J
103000J = (1/2) * m * (13.1m/s)^2
Solve for m
Answer:
1.10134 * 10⁻⁹m⁻¹
Explanation:
K = 680Nm⁻¹
μ = ?
μ = (m₁ + m₂) / m₁m₂
compound = CO
C = 12.0 g/mol = 0.012kg/mol
O = 16.0g/mol = 0.016kg/mol
μ = (m₁ + m₂) / m₁m₂
μ = (0.012 + 0.016) / (0.012*0.016) = 145.83
v = 1/2πc * √(k/μ)
ν = 1/ 2*3.142* 3.0*10⁸ * √(630/145.83)
v = 5.30*10⁻¹⁰ * 2.078
v = 1.10134*10⁻⁹m⁻¹
Answer:
v = 3.04 m/s
Explanation:
given,
mass of the block, M = 6.6 Kg
horizontal force, F = 12.2 N
distance, L = 2.5 m
initial speed = 0 m/s
speed of the block,v = ?
we now
Work done is equal to change in Kinetic energy.
Work done = Force x displacement
W = Δ K E
Δ K E = Force x displacement


3.3 v² = 30.5
v² = 9.242
v = 3.04 m/s
speed of the block is equal to 3.04 m/s
Total amount of energy would remain constant according to law of conservation of energy. i.e., 50 Joules
In short, Your Answer would be Option C) <span>50 Joules because as energy converts from one form to another, it cannot be created or destroyed during the conversion.
</span>
Hope this helps!
Answer:
v = -v₀ / 2
Explanation:
For this exercise let's use kinematics relations.
Let's use the initial conditions to find the acceleration of the electron
v² = v₀² - 2a y
when the initial velocity is vo it reaches just the negative plate so v = 0
a = v₀² / 2y
now they tell us that the initial velocity is half
v’² = v₀’² - 2 a y’
v₀ ’= v₀ / 2
at the point where turn v = 0
0 = v₀² /4 - 2 a y '
v₀² /4 = 2 (v₀² / 2y) y’
y = 4 y'
y ’= y / 4
We can see that when the velocity is half, advance only ¼ of the distance between the plates, now let's calculate the velocity if it leaves this position with zero velocity.
v² = v₀² -2a y’
v² = 0 - 2 (v₀² / 2y) y / 4
v² = -v₀² / 4
v = -v₀ / 2
We can see that as the system has no friction, the arrival speed is the same as the exit speed, but with the opposite direction.