Answer:
In physics, equations of motion are equations that describe the behavior of a physical system in terms of its motion as a function of time.[1] More specifically, the equations of motion describe the behaviour of a physical system as a set of mathematical functions in terms of dynamic variables. These variables are usually spatial coordinates and time, but may include momentum components. The most general choice are generalized coordinates which can be any convenient variables characteristic of the physical system.[2] The functions are defined in a Euclidean space in classical mechanics, but are replaced by curved spaces in relativity. If the dynamics of a system is known, the equations are the solutions for the differential equations describing the motion of the dynamics.
Explanation:
Given that,
Size of object, h = 0.066 m
Object distance from the lens, u = 0.210 m (negative)
Focal length of the converging lens, f = 0.14 m
If v is the image distance from the lens, we can find it using lens formula as follows :
(a) Magnification,

(b) Magnification, 
h' is image height

Hence, this is the required solution.
D. write down the coefficients
Answer:
1.57 s
Explanation:
Since the motion of the hammer is a uniformly accelerated motion, the distance covered by the hammer in a time t is

Where, in this case
S = 2.0 m is the distance covered
a = 1.62 m/s^2 is the acceleration due to gravity
t is the time taken
Re-arranging the equation, we can find the time the hammer takes:

<span>Solar prominences
themselves are of no concern because they are visible in the Hydrogen Alpha
wavelength. They are anchored in place by magnetic fields. When these fields
break or reconnect, it can send the plasma that makes up the prominence away
from the sun. If one of these clouds impacts Earth, they are called CMEs or
coronal mass ejections. Depending on the magnetic orientation of the cloud with
respect to Earth's the CME can break down our magnetic field resulting in
geomagnetic storms, aurorae, power grid fluctuations, and particle radiation
near the poles, satellite single upset events, and radio blackouts. </span>
<span>
</span>
<span>Thus, letter a is the answer. </span>