Lots of reasons. one reason i lie alot (a very bad habit) is im scared of what will happen if i tell the truth. the truth is always better, though.
Answer:
The answer is 218
Explanation:
Weight = mass * gravitational acceleration
weight is represented by F
F = 25kg (8.7)
(I'm pretty sure that you don't have to include the meters per second/per second thing)
Given:
Sample 1:
Chloroform is 
12 g Carbon
1.01 g Hydrogen
106.4 g Cl
Sample 2:
30.0 g of Carbon
Solution:
mass of chloroform from sample 1:
12 + 1.01 +106.4 =119.41 g
Now, for the total mass of chloroform in sample 2:
mass of chloroform 

mass of chloroform = 119.41 
= 298.53 g
Answer:
The specific heat for the metal is 0.466 J/g°C.
Explanation:
Given,
Q = 1120 Joules
mass = 12 grams
T₁ = 100°C
T₂ = 300°C
The specific heat for the metal can be calculated by using the formula
Q = (mass) (ΔT) (Cp)
ΔT = T₂ - T₁ = 300°C - 100°C = 200°C
Substituting values,
1120 = (12)(200)(Cp)
Cp = 0.466 J/g°C.
Therefore, specific heat of the metal is 0.466 J/g°C.
Answer:
kinetic energy will change by a factor of 1/2
Option C) 1/2 is the correct answer
Explanation:
Given the data in the question;
we know that;
Kinetic energy = 1/2.mv²
given that mass of the object is doubled; m1 = 2m
speed is halved; v1 = V/2
Now, New kinetic energy will be; 1/2.m1v1²
we substitute
Kinetic Energy = 1/2 × 2m × (v/2)²
Kinetic Energy = 1/2 × 2m × (v²/4)
Kinetic Energy = 1/2 × m × (v²/2)
Kinetic Energy = 1/2 [ 1/2mv² ]
Kinetic Energy = 1/2 [ KE ]
Therefore; kinetic energy will change by a factor of 1/2
Option C) 1/2 is the correct answer