A large force is required to accelerate the mass of the bicycle and rider. Once the desired constant velocity is reached, a much smaller force is sufficient to overcome the ever-present frictional forces.
Answer:
Answer:
Propotionality is important
Explanation:
Explanation:
Answer:
The acceleration of the proton is 2.823 x 10¹⁷ m/s²
The acceleration of the electron is 5.175 x 10²⁰ m/s²
Explanation:
Given;
distance between the electron and proton, r = 7 x 10⁻¹⁰ m
mass of proton,
= 1.67 x 10⁻²⁷ kg
mass of electron,
= 9.11 x 10⁻³¹ kg
The attractive force between the two charges is given by Coulomb's law;

where;
k is Coulomb's constant = 9 x 10⁹ Nm²/c²

Acceleration of proton is given by;
F = ma

Acceleration of the electron is given by;

Can you please stop pasting this question, just go to his profile and ask him.
"Frequency decreases" is the one way among the following choices given in the question that <span>frequency change as wavelength increases. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has actually come to your desired help.</span>