3rd class levers
i’m 100% right
Answer:
dt = ds/dv.
Explanation:
to calculate the time step if you have a vector of accumulative distance and instanteneous velocity vector can be expressed bellow
solution
ds = dv/dt
divide the step distance by the instantaneous velocity you will get the time step.
that it
dt = ds/dv.
so to calculate the time step having a vector that keeps adding every step and speed at that moment is this dt = ds/dv.
Carbon is found in the solid form in geosphere of our earth. Coal and oil are some of the examples of materials containing carbon in the geosphere. when the coal or oil is burnt, carbon dioxide is formed and released in atmosphere. This carbon dioxide is absorbed by the water of the hydrosphere with the help of algae and plankton. The water turns acidic in nature. This way carbon is transferred from geosphere to hydrosphere.
<span>After an exoplanet has been identified using a given detection method, scientists attempt to identify the basic properties of the planet which can tell us what it might be made of, how hot it might be, whether or not it contains an atmosphere, how that atmosphere might behave, and finally, whether the planet may be suitable for life. It is often useful to first determine basic properties of the parent star (such as mass and distance from the Earth). This is then followed by the use of planetary detection methods to calculate planetary mass, radius, orbital radius, orbital period, and density. The density calculation will provide clues as to what the planet is made of and whether or not it contains a significant atmosphere.
Mass and Distance of Parent Star
The mass and distance of an exoplanet's parent star must often be calculated first, before certain measurements of the exoplanet can be made. For example, determining the star's distance is an important step in determining a star's mass (see below). Knowing the mass of a star then allows the mass of the planet to be measured, for example when using the Radial Velocity Method.</span>