Answer:
28.23 years
Explanation:
I = 1100 A
L = 230 km = 230, 000 m
diameter = 2 cm
radius, r = 1 cm = 0.01 m
Area, A = 3.14 x 0.01 x 0.01 = 3.14 x 10^-4 m^2
n = 8.5 x 10^28 per cubic metre
Use the relation
I = n e A vd
vd = I / n e A
vd = 1100 / (8.5 x 10^28 x 1.6 x 10^-19 x 3.14 x 10^-4)
vd = 2.58 x 10^-4 m/s
Let time taken is t.
Distance = velocity x time
t = distance / velocity = L / vd
t = 230000 / (2.58 x 10^-4) = 8.91 x 10^8 second
t = 28.23 years
Hello =D
This problem is about cinematic
So
V = 45 mi/h
t = 2 h
Then
V= X/t
X = V*t
Then
X = (45)*(2)
X = 90 mi
Best regards
Answer:
The answer is
<h2>10 m/s²</h2>
Explanation:
To find the acceleration of an object given the force and mass we use the formula
<h3>

</h3>
From the question
mass of object = 50 kg
force = 500 N
So the acceleration is
<h3>

</h3>
We have the final answer as
<h3>10 m/s²</h3>
Hope this helps you
Answer:
The acceleration of the car will be 
Explanation:
We have given that distance from stop sign s = 200 m
Time t = 0.2 sec
We have to find the constant acceleration
Now from second equation of motion 


So the acceleration of the car will be 
mass density orbit time temperature surface conditions
distyance from sun