Answer:
at the beginning:
pH = 0.745
Explanation:
HCl is a strong acid, so:
0.18 M 0.18 0.18.....equilibrium
before base is added:
∴ [ H3O+ ] ≅ <em>C </em>HCl = 0.18 M
⇒ pH = - Log [ H3O+ ] = - Log ( 0.18 )
⇒ pH = 0.745
Number of moles in the K2SO4 sample
= (16/1000)*1.04= 0.01664 mol
Number of moles in the Ba(NO3)2 sample
= (14.3/1000*0.880)= 0.01258 mol
Since the reaction is a 1:1 ratio between the two reactants, the limiting reagent is the one containing a smaller number of moles, namely Ba(NO3)2.
The molecular mass of BaSO4 is 137.3+(32.06+4*16.00)=233.4
Therefore the theoretical yield of Barium Sulphate is
233.4*0.01258=2.937 g
Actual yield = 2.60 g (given)
Therefore the percentage yield = 2.60/2.937=88.54%
Answer:
1. the limiting reagent is Barium Nitrate (Ba(NO3)2)
2. the theoretical yield is 2.94 g
3. the percentage yield is 88.5%
I apologize for the mistake previous to this update.
The standard enthalpy of reaction should be negative.
<h3>What is enthalpy?</h3>
A thermodynamic quantity equivalent to the total heat content of a system. It is equal to the internal energy of the system plus the product of pressure and volume.
Inside the heat pack are two chemicals that get mixed when you smush them together. As they mix, some weak bonds are broken, which takes a little bit of energy. But new, stronger bonds form which release energy. Releasing that energy causes the surroundings to heat up.
Hence, option B is correct.
Learn more about enthalpy here:
brainly.com/question/13775366
#SPJ1
Answer:
The photosynthesis process is interrupted.
Explanation:
Algae produce energy using the photosynthesis process. The reduction of 3-phosphoglycerate to glyceraldehyde 3-phosphate is part of this process. Despite this reduction reaction being light-independent (Calvin Cycle), the precursors of this reaction are synthesized in light-dependent steps.
This is the reason why the reduction is blocked when the algae is placed in the dark.
Answer:
32
Explanation:
The vapour density of a gas is the number of times a given volume of gas or vapour is as heavy as the same volume of hydrogen at a particular temperature and pressure.
Vapour density = 2 × relative molecular mass of the gas or vapour
Relative molecular mass of SO2 = 32 + 2(16) = 64
Hence;
Vapour density of SO2 = 64/2
Vapour density of SO2 = 32