Answer: mass for Pyrex glass 84.21g
mass for sand 61.6g
mass for ethanol 41.32g
mass for water 62.07g
Explanation
By definition specific heat is the amount of heat required to change the temperature of 1 kg mas by 1°C
Q=mcΔT is formula for specific heat
Q is heat transfer
m is mass
ΔT is change in temperature
c is specific heat
c of Pyrex glass= 0.75 j/g°C
c of sand = 0.84 j/g°C
c of ethanol= 2.42 j/g°C
c of water = 4.18 j/g°C
now we will make M(mass) the subject, so equation becomes
m=Q/cΔT
for
pyrex glass T<em>f=</em>55.4°C
m=1920/(55.4-25)*0.75
m=84.21g {after cutting J(joules) and °C we are left with g(grams)}
for
sand T<em>f</em>=62.1°C
m=1920/(62.1-25)*0.84
m=61.6g {after cutting J(joules) and °C we are left with g(grams)}
for
ethanol T<em>f</em>=44.2°C
m=1920/(44.2-25)*2.42
m=41.32g {after cutting J(joules) and °C we are left with g(grams)}
for
water T<em>f=</em>32.4°
m=1920/(32.4-25)*4.18
m=62.07g {after cutting J(joules) and °C we are left with g(grams)}
i hope you understand the solution, thank you.
Normal reaction force on the block while it is at rest on the inclined plane is given as

here we know that
m = 46 kg

now we will have

now the limiting friction or maximum value of static friction on the block will be given as


Above value is the maximum value of force at which block will not slide
Now the weight of the block which is parallel to inclined plane is given as

here we know that

Now since the weight of the block here is less than the value of limiting friction force and also the block is at rest then the frictional force on the block is static friction and it will just counter balance the weight of the block along the inclined plane.
So here <u>friction force on the given block will be same as its component on weight which is 218.55 N</u>
Answer:you can just look this up yknow?
Explanation:
The imaginary line from the tip of the football to the football to the sideline is called Line of Scrimmage. I believe.
Answer:
0.65 m/s
Explanation:
Applying the equation,
v = u + at
35 = u + a×2.3 -(1)
Again, applying the equation,
s = ut +
a
41 = u×2.3 +
× 
35.65 = 2u + 2.3a -(2)
comparing first and second we get u= 0.65 m/s