Explanation:
The table is level and there are no other forces on the book, so the normal force is equal to the weight.
N = mg
N = (2.3 kg) (9.8 m/s²)
N = 22.5 N
Answer: E) A) salt water.
Explanation:
E) In equilibrium, pressure exerts equally in all directions, so for a given depth, the pressure is the same for all points located at the same depth, and it can be written as follows:
p = p₀ + ρ.g.h, where p₀ = atmospheric pressure, ρ=fluid density, h=depth from the surface.
A) The buoyant force, as discovered by Archimedes, is an upward force, that opposes to the weight of an object (as it is always downward), and is equal to the weight of the volume of the liquid that the object removes, which means that is proportional to the density of the liquid.
As salt water is denser than fresh water, the buoyant force exerted by the salt water is always greater than the one produced by the fresh water, so objects will float more easily in salt water than in fresh water.
In the limit, it is possible that one object float in salt water and sink in fresh water.
Answer:She would need to first know the weight of the sculpture and what she is going to move it with then she will need to use newton's second law to calculate the amount of force needed to move it
Explanation: I just did the assignment on edgunity
A decagram is 1000 times bigger than a centigram