<u>The question does not provide enough information to complete the answer, so I'll assume the needed data to help you to solve your own problem</u>
Answer:
<em>The fly should need to move at 9,534.6 m/s to have the same kinetic energy as the automobile</em>
Explanation:
<u>Kinetic Energy
</u>
Is the capacity of a body to do work due to its speed and is computed by

We are not given enough data to compare the kinetic energy of the fly with that of the automobile. We'll assume the following characteristics:


So its kinetic energy is


The mass of the fly is

To have the same kinetic as the automobile:

Solving for 



The fly should need to move at 9,534.6 m/s to have the same kinetic energy as the automobile
Einstein's equations showed that matter could be converted into energy; and vice-versa
☺☺☺☺
Answer:
did u know there's no such thing as "pear cider."
Explanation:
We can use Newton II here (where F=m*a), that F is the net (or resultant) force on the object, m is the mass of the object and a is the acceleration the object experiences.
This means, in this case there would be no friction and absolutely no other force which gives a component in the plane of motion, only then can you assume that F=804N.
Now using F= m*a
804 = 51.7*a
Therefore a = 804/51.7 = 15.55 m/s²