Answer:
we have formula of frequency :
frequency(f)= speed of sound(c)/wavelength(λ)
for wavelength we swipe it with frequency as follows
λ=c/f
λ=300,000,000/101,700,000
λ=2.949
Answer:
W = 0.842 J
Explanation:
To solve this exercise we can use the relationship between work and kinetic energy
W = ΔK
In this case the kinetic energy at point A is zero since the system is stopped
W = K_f (1)
now let's use conservation of energy
starting point. Highest point A
Em₀ = U = m g h
Final point. Lowest point B
Em_f = K = ½ m v²
energy is conserved
Em₀ = Em_f
mg h = K
to find the height let's use trigonometry
at point A
cos 35 = x / L
x = L cos 35
so at the height is
h = L - L cos 35
h = L (1-cos 35)
we substitute
K = m g L (1 -cos 35)
we substitute in equation 1
W = m g L (1 -cos 35)
let's calculate
W = 0.500 9.8 0.950 (1 - cos 35)
W = 0.842 J
Answer:
Hi... Potential energy is converted to kinetic energy and kinetic energy is converted to potential energy
Answer:
The recoil velocity is 0.354 m/s.
Explanation:
Given that,
Mass of hunter = 70 kg
Mass of bullet = 42 g = 0.042 kg
Speed of bullet = 590 m/s
We need to calculate the recoil speed of hunter
Using conservation of momentum

Where,
= mass of hunter
= mass of bullet
u = initial velocity
v = recoil velocity
Put the value in the equation



Hence, The recoil velocity is 0.354 m/s.
<span>If the swimmer is swimming perpendicular to the current, it will take her 66m / 0.42 m/s = 157.14 seconds to cross the river. At the same time, the current will be taking her downstream at a rate of 0.32 m/s. So, when she reaches the opposite bank, her total downstream distance traveled will have been 0.32*157.14 = 50.28 meters.</span>