Answer:
12 neutrons
Explanation:
The number of protons also shows the atomic number. Therefore the element in question is Krypton (Kr), which also is a noble gas.
Neutrons = Mass number - protons - electrons
Here neutrons = 84 - 36 - 36 = 12
Answer:
100 J
Explanation:
The potential energy is given by the formula ...
PE = mgh
= (2 kg)(10 m/s^2)(5 m) = 100 J
Answer:
Explanation:
Given:
Steam Mass rate, ms = 1.5 kg/min
= 1.5 kg/min × 1 min/60 sec
= 0.025 kg/s
Air Mass rate, ma = 100 kg/min
= 100 kg/min × 1 min/60 sec
= 1.67 kg/s
A.
Extracting the specific enthalpy and temperature values from property table of “Saturated water – Pressure table” which corresponds to temperature at 0.07 MPa.
xf, quality = 0.9.
Tsat = 89.9°C
hf = 376.57 kJ/kg
hfg = 2283.38 kJ/kg
Using the equation for specific enthalpy,
hi = hf + (hfg × xf)
= 376.57 + (2283.38 × 0.9)
= 2431.552 kJ/kg
The specific enthalpy of the outlet, h2 = hf
= 376.57 kJ/kg
B.
Rate of enthalpy (heat exchange), Q = mass rate, ms × change in specific enthalpy
= ms × (hi - h2)
= 0.025 × (2431.552 - 376.57)
= 0.025 × 2055.042
= 51.37455 kW
= 51.38 kW.
Answer:
As beams of particles and their associated energy are given off, the pulsar will lose energy slowly, which will decrease the rate of its rotation. The frequency of pulses would therefore decrease, so that fewer pulses are observed in a given time span. The strength of the pulse signal will also decrease so the pulses will become fainter. Eventually, the pulsar should rotate so slowly and have such a low emission of radiation that it would no longer be observable.