D=m/V therefore the answer is 120/200 or 0.6
g Generally the accepted value of acceleration due to gravity is 9.801 
as per the question the acceleration due to gravity is found to be 9.42
in an experiment performed.
the difference between the ideal and observed value is 0.381.
hence the error is -
=3.88735 percent
the error is not so high,so it can be accepted.
now we have to know why this occurs-the equation of time period of the simple pendulum is give as-![T=2\pi\sqrt[2]{l/g}](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%5B2%5D%7Bl%2Fg%7D)

As the experiment is done under air resistance,so it will affect to the time period.hence the time period will be more which in turn decreases the value of g.
if this experiment is done in a environment of zero air resistance,we will get the value of g which must be approximately equal to 9.801 
The correct answer is:
Work is negative, the environment did work on the object, and the energy of the system decreases.
In fact, the work-energy theorem states that the work done by the system is equal to its variation of kinetic energy:

In this problem, the variation of kinetic energy
is negative (because the final velocity is less than the initial velocity), so the work is negative, and this means that the environment did work on the object, and its energy decreased.
The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
Answer: The unit of impulse is applied to an object produces an equivalent vector change in its linear momentum, also in the same direction.
Explanation: