Answer:
v=0.94 m/s
Explanation:
Given that
M= 5.67 kg
k= 150 N/m
m=1 kg
μ = 0.45
The maximum acceleration of upper block can be μ g.
a= μ g ( g = 10 m/s²)
The maximum acceleration of system will ω²X.
ω = natural frequency
X=maximum displacement
For top stop slipping
μ g =ω²X
We know for spring mass system natural frequency given as
By putting the values
ω = 4.47 rad/s
μ g =ω²X
By putting the values
0.45 x 10 = 4.47² X
X = 0.2 m
From energy conservation
150 x 0.2²=6.67 v²
v=0.94 m/s
This is the maximum speed of system.
Answer:
The units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Explanation:
P² = a³ is the simplified version of Kepler's third law which governs the orbital motion of large bodies that orbit around a star. The orbit of each planet is an ellipse with the star at the focal point.
Therefore, if you square the year of each planet and divide it by the distance that it is from the star, you will get the same number for all the other planets.
Thus, the units of the orbital period P is <em>years </em> and the units of the semimajor axis a is <em>astronomical units</em>.
Answer:
9.82 × Hz
Explanation:
De Broglie equation is used to determine the wavelength of a particle (e.g electron) in motion. It is given as:
λ =
where: λ is the required wavelength of the moving electron, h is the Planck's constant, m is the mass of the particle, v is its speed.
Given that: h = 6.63 × Js, m = 2.50 kg, v = 2.70 m/s, the wavelength, λ, can be determined as follows;
λ =
=
=
= 9.8222 ×
The wavelength of the object is 9.82 × Hz.
Answer:
0.5kg
Explanation:
Given parameters:
Potential energy = 147J
Height = 30m
Unknown:
Mass of the bird = ?
Solution:
Potential energy is the energy due to the position of a body. Now, the expression for finding the potential energy is given as;
P.E = mgH
m is the mass
g is the acceleration due to gravity = 9.8m/s²
H is the height
147 = m x 9.8 x 30
m = 0.5kg
Hi there!
We know that:
U = Potential Energy (J)
K = Kinetic Energy (J)
E = Total Energy (J)
At 10m, the total amount of energy is equivalent to:
U + K = 50 + 50 = 100 J
To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:
100J = mgh
We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².
50J = 10(10)m
m = 1/2 kg
Now, solve for height given that E = 100 J:
100J = 1/2(10)h
100J = 5h
<u>h = 20 meters</u>